(2012•蓮都區(qū)模擬)如圖,在平面直角坐標(biāo)系xOy中,△ABC的A、B兩個(gè)頂點(diǎn)在x軸上,頂點(diǎn)C在y軸的負(fù)半軸上.已知OA:OB=1:5,OB=OC,△ABC的面積S△ABC=15,拋物線y=ax2+bx+c(a≠0)經(jīng)過(guò)A、B、C三點(diǎn).
(1)求此拋物線的函數(shù)表達(dá)式;
(2)點(diǎn)P(2,-3)是拋物線對(duì)稱軸上的一點(diǎn),在線段OC上有一動(dòng)點(diǎn)M,以每秒2個(gè)單位的速度從O向C運(yùn)動(dòng),(不與點(diǎn)O,C重合),過(guò)點(diǎn)M作MH∥BC,交X軸于點(diǎn)H,設(shè)點(diǎn)M的運(yùn)動(dòng)時(shí)間為t秒,試把△PMH的面積S表示成t的函數(shù),當(dāng)t為何值時(shí),S有最大值,并求出最大值;
(3)設(shè)點(diǎn)E是拋物線上異于點(diǎn)A,B的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)E作x軸的平行線交拋物線于另一點(diǎn)F.以EF為直徑畫(huà)⊙Q,則在點(diǎn)E的運(yùn)動(dòng)過(guò)程中,是否存在與x軸相切的⊙Q?若存在,求出此時(shí)點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
分析:(1)由已知設(shè)OA=m,則OB=OC=5m,AB=6m,由S△ABC=
1
2
AB×OC=15,可求m的值,確定A、B、C三點(diǎn)坐標(biāo),由A、B兩點(diǎn)坐標(biāo)設(shè)拋物線交點(diǎn)式,將C點(diǎn)坐標(biāo)代入求解即可;
(2)先根據(jù)點(diǎn)B、C的坐標(biāo)求出直線BC的解析式,在設(shè)出點(diǎn)M的坐標(biāo),從而求出MH的解析式,根據(jù)拋物線的對(duì)稱軸x=2得到直線MH與對(duì)稱軸的交點(diǎn)D的坐標(biāo),求出DP的長(zhǎng)度,然后根據(jù)S△PMH=
S△PMD+S△PDH,列式得到關(guān)于t的二次函數(shù),最后根據(jù)二次函數(shù)的最值問(wèn)題解答即可;
(3)存在.根據(jù)拋物線的解析式設(shè)出點(diǎn)E的坐標(biāo),然后根據(jù)二次函數(shù)的對(duì)稱性求出點(diǎn)E到對(duì)稱軸的距離,再根據(jù)以EF為直徑的⊙Q與x軸相切,則點(diǎn)E到x軸的距離等于點(diǎn)E到對(duì)稱軸的距離相等,然后列出方程,再根據(jù)絕對(duì)值的性質(zhì)去掉括號(hào)解方程即可,從而得到點(diǎn)E的坐標(biāo).
解答:解:(1)∵|OA|:|OB|=1:5,|OB|=|OC|,
設(shè)OA=m,則OB=OC=5m,AB=6m,
由S△ABC=
1
2
AB×OC=15,得
1
2
×6m×5m=15,
解得m=1(舍去負(fù)值),
∴A(-1,0),B(5,0),C(0,-5),
設(shè)拋物線解析式為y=a(x+1)(x-5),將C點(diǎn)坐標(biāo)代入,得a=1,
∴拋物線解析式為y=(x+1)(x-5),
即y=x2-4x-5;

(2)∵B(5,0),C(0,-5),
∴直線BC的解析式為:y=x-5,
∵點(diǎn)M的運(yùn)動(dòng)時(shí)間為t,
∴M(0,-2t),
∵直線MH平行于直線BC,
∴直線MH為y=x-2t,
設(shè)直線MH與對(duì)稱軸交于點(diǎn)D,點(diǎn)D的坐標(biāo)為(2,2-2t),
∴DP=(2-2t)-(-3)=5-2t,
∴S△PMH=
1
2
×2t(5-2t)=-2t2+5t=-2(t-
5
4
2+
25
8
,(0<t<
5
2
),
∴當(dāng)t=
5
4
時(shí),S有最大值是
25
8


(3)∵拋物線的解析式為y=x2-4x-5,
∴設(shè)點(diǎn)E的坐標(biāo)為(x,x2-4x-5),
又∵拋物線的對(duì)稱軸為x=2,
∴點(diǎn)E到對(duì)稱軸的距離為
1
2
EF=|x-2|,
∵以EF為直徑的⊙Q與x軸相切,
∴|x-2|=|x2-4x-5|,
①x-2>0,x2-4x-5>0時(shí),即x>5時(shí),x-2=x2-4x-5,
整理得,x2-5x-3=0,
解得x=
5+
37
2
,x=
5-
37
2
(舍去),
∴x-2=
1+
37
2
,
此時(shí)點(diǎn)E的坐標(biāo)為(
5+
37
2
,
1+
37
2
),
②x-2>0,x2-4x-5<0時(shí),即2<x<5時(shí),x-2=-(x2-4x-5),
整理得,x2-3x-7=0,
解得x=
3+
37
2
,x=
3-
37
2
(舍去),
∴-(x-2)=-(
3+
37
2
-2)=
1-
37
2

此時(shí)點(diǎn)E的坐標(biāo)為(
3+
37
2
,
1-
37
2
),
③x-2<0,x2-4x-5>0時(shí),即x<-1時(shí),-(x-2)=x2-4x-5,
整理得,x2-3x-7=0,
解得x=
3-
37
2
,x=
3+
37
2
(舍去),
∴-(x-2)=-(
3-
37
2
-2)=
1+
37
2
,
此時(shí)點(diǎn)E的坐標(biāo)為(
3-
37
2
,
1+
37
2
),
④x-2<0,x2-4x-5<0時(shí),即-1<x<2時(shí),-(x-2)=-(x2-4x-5),
整理得,x2-5x-3=0,
解得x=
5-
37
2
,x=
5+
37
2
(舍去),
∴x-2=
5-
37
2
-2=
1-
37
2
,
此時(shí)點(diǎn)E的坐標(biāo)為(
5-
37
2
1-
37
2
),
綜上所述,存在點(diǎn)E:(
5+
37
2
1+
37
2
),(
3+
37
2
,
1-
37
2
),(
3-
37
2
1+
37
2
),(
5-
37
2
,
1-
37
2
)使得以EF為直徑的⊙Q與x軸相切.
點(diǎn)評(píng):本題考查了二次函數(shù)的綜合運(yùn)用,待定系數(shù)法求二次函數(shù)解析式,二次函數(shù)的最值問(wèn)題,三角形的面積,以及二次函數(shù)的對(duì)稱性,(3)中要注意點(diǎn)到直線的距離的表示以及絕對(duì)值方程的討論求解,難度不大,但運(yùn)算比較麻煩,計(jì)算時(shí)要認(rèn)真仔細(xì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•蓮都區(qū)模擬)將拋物線y=-2x2-1向上平移若干個(gè)單位,使拋物線與坐標(biāo)軸有三個(gè)交點(diǎn),如果這些交點(diǎn)能構(gòu)成直角三角形,那么平移的距離為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•蓮都區(qū)模擬)如圖,在Rt△ABC中,AB=CB,BO⊥AC于點(diǎn)O,把△ABC折疊,使AB落在AC上,點(diǎn)B與AC上的點(diǎn)E重合,展開(kāi)后,折痕AD交BO于點(diǎn)F,連接DE、EF.下列結(jié)論:①tan∠ADB=2;②圖中有4對(duì)全等三角形;③若將△DEF沿EF折疊,則點(diǎn)D不一定落在AC上;④BD=BF;⑤S四邊形DFOE=S△AOF,上述結(jié)論中錯(cuò)誤的個(gè)數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•蓮都區(qū)模擬)一元二次方程x(2x+3)=0的解為
x1=0,x2=-
3
2
x1=0,x2=-
3
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•蓮都區(qū)模擬)計(jì)算:(
12
)-2+tan45°-|-3|

查看答案和解析>>

同步練習(xí)冊(cè)答案