分析:(1)由已知設(shè)OA=m,則OB=OC=5m,AB=6m,由S
△ABC=
AB×OC=15,可求m的值,確定A、B、C三點(diǎn)坐標(biāo),由A、B兩點(diǎn)坐標(biāo)設(shè)拋物線交點(diǎn)式,將C點(diǎn)坐標(biāo)代入求解即可;
(2)先根據(jù)點(diǎn)B、C的坐標(biāo)求出直線BC的解析式,在設(shè)出點(diǎn)M的坐標(biāo),從而求出MH的解析式,根據(jù)拋物線的對稱軸x=2得到直線MH與對稱軸的交點(diǎn)D的坐標(biāo),求出DP的長度,然后根據(jù)S
△PMH=
S
△PMD+S
△PDH,列式得到關(guān)于t的二次函數(shù),最后根據(jù)二次函數(shù)的最值問題解答即可;
(3)存在.根據(jù)拋物線的解析式設(shè)出點(diǎn)E的坐標(biāo),然后根據(jù)二次函數(shù)的對稱性求出點(diǎn)E到對稱軸的距離,再根據(jù)以EF為直徑的⊙Q與x軸相切,則點(diǎn)E到x軸的距離等于點(diǎn)E到對稱軸的距離相等,然后列出方程,再根據(jù)絕對值的性質(zhì)去掉括號解方程即可,從而得到點(diǎn)E的坐標(biāo).
解答:解:(1)∵|OA|:|OB|=1:5,|OB|=|OC|,
設(shè)OA=m,則OB=OC=5m,AB=6m,
由S
△ABC=
AB×OC=15,得
×6m×5m=15,
解得m=1(舍去負(fù)值),
∴A(-1,0),B(5,0),C(0,-5),
設(shè)拋物線解析式為y=a(x+1)(x-5),將C點(diǎn)坐標(biāo)代入,得a=1,
∴拋物線解析式為y=(x+1)(x-5),
即y=x
2-4x-5;
(2)∵B(5,0),C(0,-5),
∴直線BC的解析式為:y=x-5,
∵點(diǎn)M的運(yùn)動(dòng)時(shí)間為t,
∴M(0,-2t),
∵直線MH平行于直線BC,
∴直線MH為y=x-2t,
設(shè)直線MH與對稱軸交于點(diǎn)D,點(diǎn)D的坐標(biāo)為(2,2-2t),
∴DP=(2-2t)-(-3)=5-2t,
∴S
△PMH=
×2t(5-2t)=-2t
2+5t=-2(t-
)
2+
,(0<t<
),
∴當(dāng)t=
時(shí),S有最大值是
;
(3)∵拋物線的解析式為y=x
2-4x-5,
∴設(shè)點(diǎn)E的坐標(biāo)為(x,x
2-4x-5),
又∵拋物線的對稱軸為x=2,
∴點(diǎn)E到對稱軸的距離為
EF=|x-2|,
∵以EF為直徑的⊙Q與x軸相切,
∴|x-2|=|x
2-4x-5|,
①x-2>0,x
2-4x-5>0時(shí),即x>5時(shí),x-2=x
2-4x-5,
整理得,x
2-5x-3=0,
解得x=
,x=
(舍去),
∴x-2=
,
此時(shí)點(diǎn)E的坐標(biāo)為(
,
),
②x-2>0,x
2-4x-5<0時(shí),即2<x<5時(shí),x-2=-(x
2-4x-5),
整理得,x
2-3x-7=0,
解得x=
,x=
(舍去),
∴-(x-2)=-(
-2)=
,
此時(shí)點(diǎn)E的坐標(biāo)為(
,
),
③x-2<0,x
2-4x-5>0時(shí),即x<-1時(shí),-(x-2)=x
2-4x-5,
整理得,x
2-3x-7=0,
解得x=
,x=
(舍去),
∴-(x-2)=-(
-2)=
,
此時(shí)點(diǎn)E的坐標(biāo)為(
,
),
④x-2<0,x
2-4x-5<0時(shí),即-1<x<2時(shí),-(x-2)=-(x
2-4x-5),
整理得,x
2-5x-3=0,
解得x=
,x=
(舍去),
∴x-2=
-2=
,
此時(shí)點(diǎn)E的坐標(biāo)為(
,
),
綜上所述,存在點(diǎn)E:(
,
),(
,
),(
,
),(
,
)使得以EF為直徑的⊙Q與x軸相切.