【題目】如圖,已知點(diǎn)A在反比例函數(shù)y= (x<0)上,作Rt△ABC,點(diǎn)D為斜邊AC的中點(diǎn),連DB并延長(zhǎng)交y軸于點(diǎn)E.若△BCE的面積為8,則k=

【答案】16
【解析】解:∵△BCE的面積為8, ∴ ,
∴BCOE=16,
∵點(diǎn)D為斜邊AC的中點(diǎn),
∴BD=DC,
∴∠DBC=∠DCB=∠EBO,
又∠EOB=∠ABC,
∴△EOB∽△ABC,
,
∴ABOB=BCOE
∴k=ABBO=BCOE=16.
所以答案是:16.
【考點(diǎn)精析】通過靈活運(yùn)用比例系數(shù)k的幾何意義和相似三角形的判定與性質(zhì),掌握幾何意義:表示反比例函數(shù)圖像上的點(diǎn)向兩坐標(biāo)軸所作的垂線段與兩坐標(biāo)軸圍成的矩形的面積;相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長(zhǎng)的比等于相似比;相似三角形面積的比等于相似比的平方即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AB=10cm,BC=8cm,點(diǎn)P從點(diǎn)A沿AC向點(diǎn)C以1cm/s的速度運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)C沿CB向點(diǎn)B以2cm/s的速度運(yùn)動(dòng)(點(diǎn)Q運(yùn)動(dòng)到點(diǎn)B停止),在運(yùn)動(dòng)過程中,四邊形PABQ的面積最小值為(
A.19cm2
B.16cm2
C.15cm2
D.12cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某興趣小組借助無(wú)人飛機(jī)航拍,如圖,無(wú)人飛機(jī)從A處飛行至B處需12秒,在地面C處同一方向上分別測(cè)得A處的仰角為75°,B處的仰角為30°.已知無(wú)人飛機(jī)的飛行速度為3米/秒,則這架無(wú)人飛機(jī)的飛行高度為(結(jié)果保留根號(hào))米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(﹣1,0),點(diǎn)B的坐標(biāo)為(4,0),經(jīng)過點(diǎn)A點(diǎn)B拋物線y=x2+bx+c與y軸交于點(diǎn)C.

(1)求拋物線的關(guān)系式;
(2)△ABC的外接圓與軸交于點(diǎn)D,在拋物線上是否存在點(diǎn)M使SMBC=SDBC , 若存在,請(qǐng)求出點(diǎn)M的坐標(biāo).
(3)點(diǎn)P是直線y=﹣x上一個(gè)動(dòng)點(diǎn),連接PB,PC,當(dāng)PB+PC+PO最小時(shí),求點(diǎn)P的坐標(biāo)及其最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)閱讀下列材料:
問題:如圖1,在等邊三角形ABC內(nèi)有一點(diǎn)P,且PA=2,PB= ,PC=1、求∠BPC度數(shù)的大小和等邊三角形ABC的邊長(zhǎng).
李明同學(xué)的思路是:將△BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,畫出旋轉(zhuǎn)后的圖形(如圖2),連接PP′,可得△P′PC是等邊三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可證),所以∠AP′B=150°,而∠BPC=∠AP′B=150°,進(jìn)而求出等邊△ABC的邊長(zhǎng)為 ,問題得到解決.
請(qǐng)你參考李明同學(xué)的思路,探究并解決下列問題:如圖3,在正方形ABCD內(nèi)有一點(diǎn)P,且PA= ,BP= ,PC=1.求∠BPC度數(shù)的大小和正方形ABCD的邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y= x﹣ 與x,y軸分別交于點(diǎn)A,B,與反比例函數(shù)y= (k>0)圖象交于點(diǎn)C,D,過點(diǎn)A作x軸的垂線交該反比例函數(shù)圖象于點(diǎn)E.
(1)求點(diǎn)A的坐標(biāo).
(2)若AE=AC. ①求k的值.
②試判斷點(diǎn)E與點(diǎn)D是否關(guān)于原點(diǎn)O成中心對(duì)稱?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,分別以直角△ABC的斜邊AB,直角邊AC為邊向△ABC外作等邊△ABD和等邊△ACE,F(xiàn)為AB的中點(diǎn),DE與AB交于點(diǎn)G,EF與AC交于點(diǎn)H,∠ACB=90°,∠BAC=30°.給出如下結(jié)論:
①EF⊥AC;②四邊形ADFE為菱形;③AD=4AG;④FH= BD
其中正確結(jié)論的為(請(qǐng)將所有正確的序號(hào)都填上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,AD=AB=BC,連接AC,且∠ACD=30°,tan∠BAC= ,CD=3,則AC=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某蔬菜經(jīng)銷商去蔬菜生產(chǎn)基地批發(fā)某種蔬菜,已知這種蔬菜的批發(fā)量在20千克~60千克之間(含20千克和60千克)時(shí),每千克批發(fā)價(jià)是5元;若超過60千克時(shí),批發(fā)的這種蔬菜全部打八折,但批發(fā)總金額不得少于300元.
(1)根據(jù)題意,填寫下表:

蔬菜的批發(fā)量(千克)

25

60

75

90

所付的金額(元)

125

   

300

   


(2)經(jīng)調(diào)查,該蔬菜經(jīng)銷商銷售該種蔬菜的日銷售量y(千克)與零售價(jià)x(元/千克)是一次函數(shù)關(guān)系,其圖象如圖,求出y與x之間的函數(shù)關(guān)系式;

(3)若該蔬菜經(jīng)銷商每日銷售此種蔬菜不低于75千克,且當(dāng)日零售價(jià)不變,那么零售價(jià)定為多少時(shí),該經(jīng)銷商銷售此種蔬菜的當(dāng)日利潤(rùn)最大?最大利潤(rùn)為多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案