如圖,P是正方形ABCD內(nèi)一點,連接PA、PB、PC,將△ABP繞點B順時針旋轉(zhuǎn)到△CBP′的位置.

(1)旋轉(zhuǎn)中心是點             ,點P旋轉(zhuǎn)的度數(shù)是           度;

(2)連結(jié)PP′,求證:△BPP′是等腰直角三角形;

(3)若PA=2,PB=4,∠APB=135°.

①求△BPP′的周長;

②求PC的長.

 

【答案】

(1)點B,90;(2)證明見試題解析;(3)①,②6.

【解析】

試題分析:(1)根據(jù)旋轉(zhuǎn)的定義解答;

(2)根據(jù)旋轉(zhuǎn)的性質(zhì)可得BP=BP′,又旋轉(zhuǎn)角為90°,然后根據(jù)等腰直角三角形的定義判定;

(3)①根據(jù)勾股定理列式求出PP′,然后根據(jù)三角形的周長公式列式進行計算即可得解;

②先根據(jù)旋轉(zhuǎn)的性質(zhì)求出∠BP′C=135°,再求出∠PP′C=90°,然后根據(jù)勾股定理列式進行計算即可得解.

試題解析:(1)∵P是正方形ABCD內(nèi)一點,△ABP繞點B順時針旋轉(zhuǎn)到△CBP′的位置,

∴旋轉(zhuǎn)中心是點B,點P旋轉(zhuǎn)的度數(shù)是90度;

(2)根據(jù)旋轉(zhuǎn)的性質(zhì)BP=BP′,∵旋轉(zhuǎn)角為90°,∴△BPP′是等腰直角三角形;

(3)①∵PB=4,∴PP′=,

∴△BPP′的周長=PB+P′B+PP′=;

②∵∠BP′C=∠BPA=135°,∴∠PP′C=∠BP′C﹣∠BP′P=135°﹣45°=90°,在Rt△PP′C中,PC=

考點:1.旋轉(zhuǎn)的性質(zhì);2.勾股定理;3.正方形的性質(zhì).

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,E是正方形ABCD對角線AC上一點,EF⊥AB,EG⊥BC,F(xiàn)、G是垂足,若正方形ABCD周長為a,則EF+EG等于( 。
A、
1
4
a
B、
1
2
a
C、a
D、2a

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖①,已知△ABC中,AB=AC,點P是BC上的一點,PN⊥AC于點N,PM⊥AB于點M,CG⊥AB于點G點.
(1)則CG、PM、PN三者之間的數(shù)量關系是
 

(2)如圖②,若點P在BC的延長線上,則PM、PN、CG三者是否還有上述關系,若有,請說明理由,若沒有,猜想三者之間又有怎樣的關系,并證明你的猜想;
(3)如圖③,AC是正方形ABCD的對角線,AE=AB,點P是BE上任一點,PN⊥AB于點N,PM⊥AC于點M,猜想PM、PN、AC有什么關系;(直接寫出結(jié)論)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

22、如圖,ABCD是正方形,P是對角線BD上一點,過P點作直線EF、GH分別平行于AB、BC,交兩組對邊于E、F、G、H,則四邊形PEDG,四邊形PHBF都是正方形,四邊形PEAH、四邊形PGCF都是矩形,設正方形PEDG的邊長是a,正方形PHBF的邊長是b. 請動手實踐并得出結(jié)論:
(1)請你動手測量一些線段的長后,計算正方形PEDG與正方形PHBF的面積之和以及矩形PEAH與矩形PGCF的面積之和.
(2)你能根據(jù)(1)的結(jié)果判斷a2+b2與2ab的大小嗎?
(3)當點P在什么位置時,有a2+b2=2ab?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖四邊形AOBC是正方形,點C的坐標是(4
2
,0),動點P、Q同時從點O出發(fā),點P沿著折線OACB的方向運動;點Q沿著折線OBCA的方向運動,設運動時間為t.
(1)求出經(jīng)過O、A、C三點的拋物線的解析式.
(2)若點Q的運動速度是點P的2倍,點Q運動到邊BC上,連接PQ交AB于點R,當AR=3
2
時,請求出直線PQ的解析式.
(3)若點P的運動速度為每秒1個單位長度,點Q的運動速度為每秒2個單位長度精英家教網(wǎng),兩點運動到相遇停止.設△OPQ的面積為S.請求出S關于t的函數(shù)關系式以及自變量t的取值范圍.
(4)判斷在(3)的條件下,當t為何值時,△OPQ的面積最大?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AC是正方形ABCD的對角線,點O是AC的中點,點Q是AB上一點,連接CQ,DP⊥CQ于點E,交BC于精英家教網(wǎng)點P,連接OP,OQ;
求證:
(1)△BCQ≌△CDP;
(2)OP=OQ.

查看答案和解析>>

同步練習冊答案