【題目】如圖,在△ABC中,AB=AC=1,BC=,在AC邊上截取AD=BC,連接BD.
(1)通過計算,判斷AD2與ACCD的大小關(guān)系;
(2)求∠ABD的度數(shù).
【答案】(1)AD2=ACCD.(2)36°.
【解析】試題分析:(1)通過計算得到=,再計算AC·CD,比較即可得到結(jié)論;
(2)由,得到,即,從而得到△ABC∽△BDC,故有,從而得到BD=BC=AD,故∠A=∠ABD,∠ABC=∠C=∠BDC.
設(shè)∠A=∠ABD=x,則∠BDC=2x,∠ABC=∠C=∠BDC=2x,由三角形內(nèi)角和等于180°,解得:x=36°,從而得到結(jié)論.
試題解析:(1)∵AD=BC=,∴==.
∵AC=1,∴CD==,∴;
(2)∵,∴,即,又∵∠C=∠C,∴△ABC∽△BDC,∴,又∵AB=AC,∴BD=BC=AD,∴∠A=∠ABD,∠ABC=∠C=∠BDC.
設(shè)∠A=∠ABD=x,則∠BDC=∠A+∠ABD=2x,∴∠ABC=∠C=∠BDC=2x,∴∠A+∠ABC+∠C=x+2x+2x=180°,解得:x=36°,∴∠ABD=36°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知Rt△AOB的兩直角邊OA、OB分別在x軸、y軸的正半軸上(OA<OB),且OA、OB的長分別是一元二次方程x2﹣14x+48=0的兩個根.線段AB的垂直平分線CD交AB于點(diǎn)C,交x軸于點(diǎn)D,點(diǎn)P是直線CD上一個動點(diǎn),點(diǎn)Q是直線AB上一個動點(diǎn).
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)求直線CD的解析式;
(3)在坐標(biāo)平面內(nèi)是否存在點(diǎn)M,使以點(diǎn)C、P、Q、M為頂點(diǎn)的四邊形是正方形,且該正方形的邊長為AB長?若存在,請直接寫出點(diǎn)M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=kx+7的圖像經(jīng)過點(diǎn)A(2,3).
(1)求k的值;
(2)判斷點(diǎn)B(-1,8),C(3,1)是否在這個函數(shù)的圖像上,并說明理由;
(3)當(dāng)-3<x<-1時,求y的取值范圍.
【答案】(1)k=-2(2)點(diǎn)B不在,點(diǎn)C在,(3)9<y<13
【解析】
試題分析:(1)把點(diǎn)A(2,3)代入y=kx+7即可求出k的值;(2)點(diǎn)B(-1,8),C(3,1)的橫坐標(biāo)代入函數(shù)解析式驗證即可;(3)根據(jù)x的取值范圍,即可求出y的取值范圍.
試題解析:(1)把點(diǎn)A(2,3)代入y=kx+7得:k=-2
(2)當(dāng)x=-1時,y=-2×(-1)+7=9
∵9≠8∴點(diǎn)B不在拋物線上.
當(dāng)x=3時,y=-2×3+7=1
∴點(diǎn)C在拋物線上
(3)當(dāng)x=-3時,y=13,當(dāng)x=-,1時,y=9,所以9<y<13
考點(diǎn):一次函數(shù).
【題型】解答題
【結(jié)束】
24
【題目】順豐快遞公司派甲、乙兩車從A地將一批物品勻速運(yùn)往B地,甲出發(fā)0.5h后乙開始出發(fā),結(jié)果比甲早1(h)到達(dá)B地,如圖,線段OP、MN分別表示甲、乙兩車離A地的距離S(km)與時間t(h)的關(guān)系,a表示A、B兩地之間的距離.請結(jié)合圖中的信息解決如下問題:
(1)分別計算甲、乙兩車的速度及a的值;
(2)乙車到達(dá)B地后以原速立即返回,請問甲車到達(dá)B地后以多大的速度立即勻速返回,才能與乙車同時回到A地?并在圖中畫出甲、乙兩車在返回過程中離A地的距離S(km)與時間t(h)的函數(shù)圖象.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E,F分別是AB,CD上的點(diǎn),點(diǎn)G是BC的延長線上一點(diǎn),且∠B=∠DCG=∠D,則下列判斷中,錯誤的是( )
A. ∠AEF=∠EFC B. ∠A=∠BCF C. ∠AEF=∠EBC D. ∠BEF+∠EFC=180°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,從①∠1=∠2 ②∠C=∠D ③∠A=∠F 三個條件中選出兩個作為已知條件,另一個作為結(jié)論所組成的命題中,正確命題的個數(shù)為( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,E、F分別是邊AD、CD上的點(diǎn),AE=ED,DF=DC,連接EF并延長交BC的延長線于點(diǎn)G。
(1)求證:△ABE∽△DEF;
(2)若正方形的邊長為4,求BG的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y1=kx+b的圖像經(jīng)過點(diǎn)(0,-2),(2,2).
(1)求一次函數(shù)的表達(dá)式,并在所給直角坐標(biāo)系中畫出此函數(shù)的圖像;;
(2)根據(jù)圖像回答:當(dāng)x 時,y1=0;
(3)求直線y1=kx+b、直線y2=-2x+4與y軸圍成的三角形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,E、F分別是邊AD、CD上的點(diǎn),AE=ED,DF=DC,連接EF并延長交BC的延長線于點(diǎn)G。
(1)求證:△ABE∽△DEF;
(2)若正方形的邊長為4,求BG的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,△ABC中,AB=AC,∠BAC=90°,點(diǎn)D是直線AB上的一動點(diǎn)(不和A、B重合),BE⊥CD于E,交直線AC于F.
(1)點(diǎn)D在邊AB上時,試探究線段BD、AB和AF的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)點(diǎn)D在AB的延長線或反向延長線上時,(1)中的結(jié)論是否成立?若不成立,請直接寫出正確結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com