Rt△ABC中,AB=AC,點D為BC中點.∠MDN=90°,∠MDN繞點D旋轉(zhuǎn),DM、DN分別與邊AB、AC交于E、F兩點.下列結(jié)論:
①(BE+CF)=BC;
②S△AEFS△ABC;
③S四邊形AEDF=AD•EF;
④AD≥EF;
⑤AD與EF可能互相平分,
其中正確結(jié)論的個數(shù)是( )

A.1個
B.2個
C.3個
D.4個
【答案】分析:先由ASA證明△AED≌△CFD,得出AE=CF,再由勾股定理即可得出BE+CF=AB=BC,從而判斷①;
設(shè)AB=AC=a,AE=CF=x,先由三角形的面積公式得出S△AEF=-(x-a)2+a2,S△ABC=×a2=a2,再根據(jù)二次函數(shù)的性質(zhì)即可判斷②;
由勾股定理得到EF的表達(dá)式,利用二次函數(shù)性質(zhì)求得EF最小值為a,而AD=a,所以EF≥AD,從而④錯誤;
先得出S四邊形AEDF=S△ADC=AD,再由EF≥AD得到AD•EF≥AD2,∴AD•EF>S四邊形AEDF,所以③錯誤;
如果四邊形AEDF為平行四邊形,則AD與EF互相平分,此時DF∥AB,DE∥AC,又D為BC中點,所以當(dāng)E、F分別為AB、AC的中點時,AD與EF互相平分,從而判斷⑤.
解答:解:∵Rt△ABC中,AB=AC,點D為BC中點,
∴∠C=∠BAD=45°,AD=BD=CD,
∵∠MDN=90°,
∴∠ADE+∠ADF=∠ADF+∠CDF=90°,
∴∠ADE=∠CDF.
在△AED與△CFD中,

∴△AED≌△CFD(ASA),
∴AE=CF,
在Rt△ABD中,BE+CF=BE+AE=AB==BD=BC.
故①正確;
設(shè)AB=AC=a,AE=CF=x,則AF=a-x.
∵S△AEF=AE•AF=x(a-x)=-(x-a)2+a2,
∴當(dāng)x=a時,S△AEF有最大值a2
又∵S△ABC=×a2=a2,
∴S△AEFS△ABC
故②正確;
EF2=AE2+AF2=x2+(a-x)2=2(x-a)2+a2
∴當(dāng)x=a時,EF2取得最小值a2,
∴EF≥a(等號當(dāng)且僅當(dāng)x=a時成立),
而AD=a,∴EF≥AD.
故④錯誤;
由①的證明知△AED≌△CFD,
∴S四邊形AEDF=S△AED+S△ADF=S△CFD+S△ADF=S△ADC=AD2,
∵EF≥AD,
∴AD•EF≥AD2,
∴AD•EF>S四邊形AEDF
故③錯誤;
當(dāng)E、F分別為AB、AC的中點時,四邊形AEDF為正方形,此時AD與EF互相平分.
故⑤正確.
綜上所述,正確的有:①②⑤,共3個.
故選C.
點評:本題主要考查了全等三角形的判定與性質(zhì),等腰直角三角形的性質(zhì),勾股定理,圖形的面積,函數(shù)的性質(zhì)等知識,綜合性較強,有一定難度.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

10、在Rt△ABC中,AB=AC,D、E是斜邊BC上兩點,且∠DAE=45°,將△ADC繞點A順時針旋轉(zhuǎn)90°后,得到△AFB,連接EF,下列結(jié)論①△AEF≌△AED;②∠AED=45°;③BE+DC=DE;④BE2+DC2=DE2,其中正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,AB=AC,P是邊AB(不含端點)上的動點,過P作BC的垂線PR,R為垂足,∠PRB的平分線與AB相交于點S.已知在線段RS上存在一點T,若以線段PT為一邊作正方形PTEF,其頂點E、F恰好分別在邊BC、精英家教網(wǎng)AC上.
(1)證明:△SBR∽△ABC;
(2)證明:ST=AP;
(3)設(shè)AB=1,PA=x,正方形PTEF的面積為y,試求y與x的函數(shù)關(guān)系,并求出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•湖州)一節(jié)數(shù)學(xué)課后,老師布置了一道課后練習(xí)題:
如圖,已知在Rt△ABC中,AB=BC,∠ABC=90°,BO⊥AC,于點O,點PD分別在AO和BC上,PB=PD,DE⊥AC于點E,求證:△BPO≌△PDE.

(1)理清思路,完成解答(2)本題證明的思路可用下列框圖表示:

根據(jù)上述思路,請你完整地書寫本題的證明過程.
(2)特殊位置,證明結(jié)論
若PB平分∠ABO,其余條件不變.求證:AP=CD.
(3)知識遷移,探索新知
若點P是一個動點,點P運動到OC的中點P′時,滿足題中條件的點D也隨之在直線BC上運動到點D′,請直接寫出CD′與AP′的數(shù)量關(guān)系.(不必寫解答過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,AB=AC,D、E是斜邊BC上兩點,且∠DAE=45°,將△ADC繞點A順時針旋轉(zhuǎn)90°后,得到△AFB,連接EF,下列結(jié)論:(1)△AED≌△AEF;(2)△ABE∽△ACD;(3)BE+DC=DE;(4)BE2+DC2=DE2.其中正確的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知在Rt△ABC中,AB=AC,以AB為直徑作⊙O交BC于點F,連結(jié)OC交⊙O于點D,連結(jié)BD并延長交AC于點E,連結(jié)DF.
(1)求證:∠CFD=∠AEB;
(2)已知AB=4,求AE的長.

查看答案和解析>>

同步練習(xí)冊答案