(2008•莆田)如圖,直角梯形ABCD中,AD∥BC,∠A=90°,DB平分∠ADC,BE⊥CD于點(diǎn)F,交AD的延長(zhǎng)線于點(diǎn)E,CF=DF.
(1)找出圖中與△DEF全等的三角形;△DEF≌______,△DEF≌______;
(2)請(qǐng)您從(1)中選擇一對(duì)全等三角形加以證明.

【答案】分析:根據(jù)已知條件利用全等三角形的判定方法可得到;△DEF≌△CBF,△DEF≌△DBF.
解答:解:△CBF,△DBF.
試證明△DEF≌△CBF.
證明:∵AD∥BC,
∴∠EDF=∠CBF.
∵BE⊥CD于點(diǎn)F,
∴∠DFE=∠CFB=90°.
∵CF=DF,
∴△DEF≌△CBF(ASA).
點(diǎn)評(píng):本題考查三角形全等的判定方法,判定兩個(gè)三角形全等的一般方法有:SSS、SAS、SSA、HL.
注意:AAA、SSA不能判定兩個(gè)三角形全等,判定兩個(gè)三角形全等時(shí),必須有邊的參與,若有兩邊一角對(duì)應(yīng)相等時(shí),角必須是兩邊的夾角.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2010年湖北省黃岡市數(shù)學(xué)中考精品試卷之四(解析版) 題型:解答題

(2008•莆田)如圖:拋物線經(jīng)過(guò)A(-3,0)、B(0,4)、C(4,0)三點(diǎn).
(1)求拋物線的解析式.
(2)已知AD=AB(D在線段AC上),有一動(dòng)點(diǎn)P從點(diǎn)A沿線段AC以每秒1個(gè)單位長(zhǎng)度的速度移動(dòng);同時(shí)另一個(gè)動(dòng)點(diǎn)Q以某一速度從點(diǎn)B沿線段BC移動(dòng),經(jīng)過(guò)t秒的移動(dòng),線段PQ被BD垂直平分,求t的值;
(3)在(2)的情況下,拋物線的對(duì)稱軸上是否存在一點(diǎn)M,使MQ+MC有最小值?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.(注:拋物線y=ax2+bx+c的對(duì)稱軸為x=-

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年湖北省黃石市陽(yáng)新縣太子中學(xué)中考模擬數(shù)學(xué)試卷(3)(解析版) 題型:解答題

(2008•莆田)如圖:拋物線經(jīng)過(guò)A(-3,0)、B(0,4)、C(4,0)三點(diǎn).
(1)求拋物線的解析式.
(2)已知AD=AB(D在線段AC上),有一動(dòng)點(diǎn)P從點(diǎn)A沿線段AC以每秒1個(gè)單位長(zhǎng)度的速度移動(dòng);同時(shí)另一個(gè)動(dòng)點(diǎn)Q以某一速度從點(diǎn)B沿線段BC移動(dòng),經(jīng)過(guò)t秒的移動(dòng),線段PQ被BD垂直平分,求t的值;
(3)在(2)的情況下,拋物線的對(duì)稱軸上是否存在一點(diǎn)M,使MQ+MC有最小值?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.(注:拋物線y=ax2+bx+c的對(duì)稱軸為x=-

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年廣東省湛江市中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2008•莆田)如圖:拋物線經(jīng)過(guò)A(-3,0)、B(0,4)、C(4,0)三點(diǎn).
(1)求拋物線的解析式.
(2)已知AD=AB(D在線段AC上),有一動(dòng)點(diǎn)P從點(diǎn)A沿線段AC以每秒1個(gè)單位長(zhǎng)度的速度移動(dòng);同時(shí)另一個(gè)動(dòng)點(diǎn)Q以某一速度從點(diǎn)B沿線段BC移動(dòng),經(jīng)過(guò)t秒的移動(dòng),線段PQ被BD垂直平分,求t的值;
(3)在(2)的情況下,拋物線的對(duì)稱軸上是否存在一點(diǎn)M,使MQ+MC有最小值?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.(注:拋物線y=ax2+bx+c的對(duì)稱軸為x=-

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008年福建省莆田市中考數(shù)學(xué)試卷(網(wǎng)絡(luò)卷)(解析版) 題型:解答題

(2008•莆田)如圖:拋物線經(jīng)過(guò)A(-3,0)、B(0,4)、C(4,0)三點(diǎn).
(1)求拋物線的解析式.
(2)已知AD=AB(D在線段AC上),有一動(dòng)點(diǎn)P從點(diǎn)A沿線段AC以每秒1個(gè)單位長(zhǎng)度的速度移動(dòng);同時(shí)另一個(gè)動(dòng)點(diǎn)Q以某一速度從點(diǎn)B沿線段BC移動(dòng),經(jīng)過(guò)t秒的移動(dòng),線段PQ被BD垂直平分,求t的值;
(3)在(2)的情況下,拋物線的對(duì)稱軸上是否存在一點(diǎn)M,使MQ+MC有最小值?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.(注:拋物線y=ax2+bx+c的對(duì)稱軸為x=-

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008年福建省莆田市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•莆田)如圖,拋物線c1:y=x2-2x-3與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.點(diǎn)P為線段BC上一點(diǎn),過(guò)點(diǎn)P作直線l⊥x軸于點(diǎn)F,交拋物線c1點(diǎn)E.
(1)求A、B、C三點(diǎn)的坐標(biāo);
(2)當(dāng)點(diǎn)P在線段BC上運(yùn)動(dòng)時(shí),求線段PE長(zhǎng)的最大值;
(3)當(dāng)PE為最大值時(shí),把拋物線c1向右平移得到拋物線c2,拋物線c2與線段BE交于點(diǎn)M,若直線CM把△BCE的面積分為1:2兩部分,則拋物線c1應(yīng)向右平移幾個(gè)單位長(zhǎng)度可得到拋物線c2?

查看答案和解析>>

同步練習(xí)冊(cè)答案