【題目】已知二次函數(shù)y=-2x2,怎樣平移這個函數(shù)的圖象,能使它經(jīng)過(0,1)和(1,3)兩點寫出平移后的函數(shù)解析式.
【答案】將二次函數(shù)y=-2x2先向右平移1個單位,再向上平移3個單位,能使它經(jīng)過(0,1)和(1,3)兩點;y=-2x2+4x+1=-2(x-1)2+3.
【解析】
平移不改變二次函數(shù)的二次項系數(shù),可設(shè)新函數(shù)解析式為y=-2x2+bx+c,把題中的兩個點代入即可.
設(shè)平移后的解析式是y=-2x2+bx+c,
把(0,1),(1,3)代入,
得
解得b=4,c=1.
所以平移后的函數(shù)解析式為y=-2x2+4x+1=-2(x-1)2+3.
因為原拋物線的頂點為(0,0),
新拋物線的頂點為(1,3).
所以將二次函數(shù)y=-2x2先向右平移1個單位,再向上平移3個單位,能使它經(jīng)過(0,1)和(1,3)兩點.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點O是線段AD的中點,分別以AO和DO為邊在線段AD的同側(cè)作等邊三角形OAB和等邊三角形OCD,連接AC和BD,相交于點E,連接BC.
(1)證明:⊿ABC ≌ ⊿DCB;
(2)求∠AEB的大。
(3)如圖2,△OAB固定不動,保持△OCD的形狀和大小不變,將△OCD繞點O旋轉(zhuǎn)(△OAB和△OCD不能重疊),求∠AEB的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A(1,3)、點B(m,1)是一次函數(shù)的圖像上的兩點,一次函數(shù)圖像與x軸交于點D.
(1)b = ,m = ;
(2)過點B作直線l垂直于x軸,點E是點D關(guān)于直線l的對稱點,點C是點A關(guān)于原點的對稱點.試判斷點B、E、C是否在同一條直線上,并說明理由.
(3)連結(jié)AO、BO,求△AOB的面積;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在A,B兩地間有一車站C,一輛汽車從A地出發(fā)經(jīng)C站勻速駛往B地如圖是汽車行駛時離C站的路程千米與行駛時間小時之間的函數(shù)關(guān)系的圖象.
填空:______km,AB兩地的距離為______km;
求線段PM、MN所表示的y與x之間的函數(shù)表達式;
求行駛時間x在什么范圍時,小汽車離車站C的路程不超過60千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,四邊形 ABCD,∠A=∠B=Rt∠.
(1)尺規(guī)作圖,在線段 AB上找一點 E,使得 EC=ED,連接 EC, ED(不寫作法,保留作圖痕跡);
(2)在(1)在圖形中,若∠ADE=∠BEC,且CE=3,BC=,求 AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在中,,點分別是直線上一個動點。
(1)若是等腰三角形,用直尺和圓規(guī)作出點(不寫作法,保留作圖痕跡),直接寫出的長;
(2)若,求的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,邊長為2的等邊三角形AEF的頂點E、F分別在BC和CD上,下列結(jié)論:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=.
其中正確的序號是 (把你認為正確的都填上).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC 中,點 D,E 分別在∠ABC 和∠ACB 的平分線上,連接 BD,DE,EC,若∠D+∠E=295°, 則∠A 是( )
A.65°B.60°C.55°D.50°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com