【題目】由于霧霾天氣頻發(fā),市場(chǎng)上防護(hù)口罩出現(xiàn)熱銷,某醫(yī)藥公司每月固定生產(chǎn)甲、乙兩種型號(hào)的防霧霾口罩共20萬(wàn)只,且所有產(chǎn)品當(dāng)月全部售出,原料成本、銷售單價(jià)及工人生產(chǎn)提成如表:

(1)若該公司五月份的銷售收入為300萬(wàn)元,求甲、乙兩種型號(hào)的產(chǎn)品分別是多少萬(wàn)只?

(2)公司實(shí)行計(jì)件工資制,即工人每生產(chǎn)一只口罩獲得一定金額的提成,如果公司六月份投入總成本(原料總成本+生產(chǎn)提成總額)不超過(guò)239萬(wàn)元,應(yīng)怎樣安排甲、乙兩種型號(hào)的產(chǎn)量,可使該月公司所獲利潤(rùn)最大?并求出最大利潤(rùn)(利潤(rùn)=銷售收入﹣投入總成本)

【答案】(1)甲型號(hào)的產(chǎn)品有10萬(wàn)只,則乙型號(hào)的產(chǎn)品有10萬(wàn)只;(2)安排甲型號(hào)產(chǎn)品生產(chǎn)15萬(wàn)只,乙型號(hào)產(chǎn)品生產(chǎn)5萬(wàn)只,可獲得最大利潤(rùn)91萬(wàn)元

【解析】

試題分析:(1)設(shè)甲型號(hào)的產(chǎn)品有x萬(wàn)只,則乙型號(hào)的產(chǎn)品有(20﹣x)萬(wàn)只,根據(jù)銷售收入為300萬(wàn)元列出方程,求出方程的解即可得到結(jié)果;

(2)設(shè)安排甲型號(hào)產(chǎn)品生產(chǎn)y萬(wàn)只,則乙型號(hào)產(chǎn)品生產(chǎn)(20﹣y)萬(wàn)只,根據(jù)公司六月份投入總成本(原料總成本+生產(chǎn)提成總額)不超過(guò)239萬(wàn)元列出不等式,求出不等式的解集確定出y的范圍,再根據(jù)利潤(rùn)=售價(jià)﹣成本列出W與y的一次函數(shù),根據(jù)y的范圍確定出W的最大值即可.

試題解析:(1)設(shè)甲型號(hào)的產(chǎn)品有x萬(wàn)只,則乙型號(hào)的產(chǎn)品有(20﹣x)萬(wàn)只,根據(jù)題意得:18x+12(20﹣x)=300,解得:x=10,則20﹣x=20﹣10=10,則甲型號(hào)的產(chǎn)品有10萬(wàn)只,則乙型號(hào)的產(chǎn)品有10萬(wàn)只;

(2)設(shè)安排甲型號(hào)產(chǎn)品生產(chǎn)y萬(wàn)只,則乙型號(hào)產(chǎn)品生產(chǎn)(20﹣y)萬(wàn)只,根據(jù)題意得:13y+8.8(20﹣y)≤239,解得:y≤15,根據(jù)題意得:利潤(rùn)W=(18﹣12﹣1)y+(12﹣8﹣0.8)(20﹣y)=1.8y+64,當(dāng)y=15時(shí),W最大,最大值為91萬(wàn)元.安排甲型號(hào)產(chǎn)品生產(chǎn)15萬(wàn)只,乙型號(hào)產(chǎn)品生產(chǎn)5萬(wàn)只,可獲得最大利潤(rùn)91萬(wàn)元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將點(diǎn)P向下平移3個(gè)單位,向左平移2個(gè)單位后得到點(diǎn)Q(3,-1),則點(diǎn)P坐標(biāo)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=3x2﹣4的圖象是一條拋物線,下列關(guān)于該拋物線的說(shuō)法正確的是(
A.拋物線開(kāi)口向下
B.拋物線經(jīng)過(guò)點(diǎn)(3,4)
C.拋物線的對(duì)稱軸是直線x=1
D.拋物線與x軸有兩個(gè)交點(diǎn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于x的一元二次方程

(1)當(dāng)m在什么范圍取值時(shí),方程有兩個(gè)實(shí)數(shù)根?

(2)設(shè)方程有兩個(gè)實(shí)數(shù)根,,問(wèn)m為何值時(shí),?

(3)若方程有兩個(gè)實(shí)數(shù)根,,問(wèn)能否同號(hào)?若能同號(hào),請(qǐng)求出相應(yīng)m的取值范圍;若不能同號(hào),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知O的半徑為6,A為線段OP的中點(diǎn),當(dāng)OP的長(zhǎng)度為10時(shí),點(diǎn)AO的位置關(guān)系為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)P為∠AOB的角平分線上的一定點(diǎn),D是射線OA上的一定點(diǎn),E是OB上的某一點(diǎn),滿足PE=PD,則∠OEP與∠ODP的數(shù)量關(guān)系是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某家電銷售商城電冰箱的銷售價(jià)為每臺(tái)2100元,空調(diào)的銷售價(jià)為每臺(tái)1750元,每臺(tái)電冰箱的進(jìn)價(jià)比每臺(tái)空調(diào)的進(jìn)價(jià)多400元,商城用80000元購(gòu)進(jìn)電冰箱的數(shù)量與用64000元購(gòu)進(jìn)空調(diào)的數(shù)量相等.

1)求每臺(tái)電冰箱與空調(diào)的進(jìn)價(jià)分別是多少?

2)現(xiàn)在商城準(zhǔn)備一次購(gòu)進(jìn)這兩種家電共100臺(tái),設(shè)購(gòu)進(jìn)電冰箱x臺(tái),這100臺(tái)家電的銷售總利潤(rùn)為y元,要求購(gòu)進(jìn)空調(diào)數(shù)量不超過(guò)電冰箱數(shù)量的2倍,總利潤(rùn)不低于13000元,請(qǐng)分析合理的方案共有多少種?并確定獲利最大的方案以及最大利潤(rùn);

3)實(shí)際進(jìn)貨時(shí),廠家對(duì)電冰箱出廠價(jià)下調(diào)k0k100)元,若商店保持這兩種家電的售價(jià)不變,請(qǐng)你根據(jù)以上信息及(2)問(wèn)中條件,設(shè)計(jì)出使這100臺(tái)家電銷售總利潤(rùn)最大的進(jìn)貨方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】0是一個(gè)( 。

A. 負(fù)整數(shù) B. 正分?jǐn)?shù) C. 非負(fù)整數(shù) D. 正整數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知代數(shù)式a2b+7的值是13,那么代數(shù)式2a4b的值是( 。

A.6B.12C.15D.26

查看答案和解析>>

同步練習(xí)冊(cè)答案