【題目】某家電銷售商城電冰箱的銷售價為每臺2100元,空調的銷售價為每臺1750元,每臺電冰箱的進價比每臺空調的進價多400元,商城用80000元購進電冰箱的數(shù)量與用64000元購進空調的數(shù)量相等.
(1)求每臺電冰箱與空調的進價分別是多少?
(2)現(xiàn)在商城準備一次購進這兩種家電共100臺,設購進電冰箱x臺,這100臺家電的銷售總利潤為y元,要求購進空調數(shù)量不超過電冰箱數(shù)量的2倍,總利潤不低于13000元,請分析合理的方案共有多少種?并確定獲利最大的方案以及最大利潤;
(3)實際進貨時,廠家對電冰箱出廠價下調k(0<k<100)元,若商店保持這兩種家電的售價不變,請你根據(jù)以上信息及(2)問中條件,設計出使這100臺家電銷售總利潤最大的進貨方案.
【答案】(1)1600,2000;(2)有7種,當購進電冰箱34臺,空調66臺獲利最大,最大利潤為13300元;(3)當50<k<100時,購進電冰箱40臺,空調60臺銷售總利潤最大;當0<k<50時,購進電冰箱34臺,空調66臺銷售總利潤最大;當k=50時,每種進貨方案的總利潤都一樣.
【解析】
試題分析:(1)設每臺空調的進價為x元,則每臺電冰箱的進價為(x+400)元,根據(jù)“商城用80000元購進電冰箱的數(shù)量與用64000元購進空調的數(shù)量相等”,列出方程,即可解答;
(2)設購進電冰箱x臺,這100臺家電的銷售總利潤為y元,表示出總利潤y=﹣50x+15000,根據(jù)題意得:求出x的取值范圍,根據(jù)x為正整數(shù),所以x=34,35,36,37,38,39,40,即合理的方案共有7種,利用一次函數(shù)的性質,確定獲利最大的方案以及最大利潤;
(3)當電冰箱出廠價下調k(0<k<100)元時,則利潤y=(k﹣50)x+15000,分兩種情況討論:當k﹣50>0;當k﹣50<0;利用一次函數(shù)的性質,即可解答.
試題解析:(1)設每臺空調的進價為x元,則每臺電冰箱的進價為(x+400)元,根據(jù)題意得:,解得:x=1600,經(jīng)檢驗,x=1600是原方程的解,x+400=1600+400=2000,
答:每臺空調的進價為1600元,則每臺電冰箱的進價為2000元.
(2)設購進電冰箱x臺,這100臺家電的銷售總利潤為y元,則y=(2100﹣2000)x+(1750﹣1600,第1題,100﹣x)=﹣50x+15000,根據(jù)題意得:,解得:,∵x為正整數(shù),∴x=34,35,36,37,38,39,40,∴合理的方案共有7種,即①電冰箱34臺,空調66臺;②電冰箱35臺,空調65臺;③電冰箱36臺,空調64臺;④電冰箱37臺,空調63臺;⑤電冰箱38臺,空調62臺;⑥電冰箱39臺,空調61臺;⑦電冰箱40臺,空調60臺;
∵y=﹣50x+15000,k=﹣50<0,∴y隨x的增大而減小,
∴當x=34時,y有最大值,最大值為:﹣50×34+15000=13300(元),
答:當購進電冰箱34臺,空調66臺獲利最大,最大利潤為13300元.
(3)當廠家對電冰箱出廠價下調k(0<k<100)元,若商店保持這兩種家電的售價不變,
則利潤y=(2100﹣2000+k)x+(1750﹣1600)(100﹣x)=(k﹣50)x+15000,
當k﹣50>0,即50<k<100時,y隨x的增大而增大,∵,∴當x=40時,這100臺家電銷售總利潤最大,即購進電冰箱40臺,空調60臺;
當k﹣50<0,即0<k<50時,y隨x的增大而減小,∵,∴當x=34時,這100臺家電銷售總利潤最大,即購進電冰箱34臺,空調66臺;
當k=50時,每種進貨方案的總利潤都一樣;
答:當50<k<100時,購進電冰箱40臺,空調60臺銷售總利潤最大;當0<k<50時,購進電冰箱34臺,空調66臺銷售總利潤最大;當k=50時,每種進貨方案的總利潤都一樣.
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙、丙三個游客團的年齡的方差分別是S甲2=1.47,S乙2=10.2,S丙2=2.3,導游小邱最喜歡帶游客年齡相近的團隊,若在這三個游客團中選擇一個,則他應選( 。
A. 甲隊B. 乙隊C. 丙隊D. 哪個都可以
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】由于霧霾天氣頻發(fā),市場上防護口罩出現(xiàn)熱銷,某醫(yī)藥公司每月固定生產甲、乙兩種型號的防霧霾口罩共20萬只,且所有產品當月全部售出,原料成本、銷售單價及工人生產提成如表:
(1)若該公司五月份的銷售收入為300萬元,求甲、乙兩種型號的產品分別是多少萬只?
(2)公司實行計件工資制,即工人每生產一只口罩獲得一定金額的提成,如果公司六月份投入總成本(原料總成本+生產提成總額)不超過239萬元,應怎樣安排甲、乙兩種型號的產量,可使該月公司所獲利潤最大?并求出最大利潤(利潤=銷售收入﹣投入總成本)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若(2a+3b)( 。=4a2﹣9b2,則括號內應填的代數(shù)式是( )
A. ﹣2a﹣3b B. 2a+3b C. 2a﹣3b D. 3b﹣2a
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某超市銷售有甲、乙兩種商品,甲商品每件進價10元,售價15元;乙商品每件進價30元,售價40元.
(1)若該超市一次性購進兩種商品共80件,且恰好用去1600元,問購進甲、乙兩種商品各多少件?
(2)若該超市要使兩種商品共80件的購進費用不超過1640元,且總利潤(利潤=售價﹣進價)不少于600元.請你幫助該超市設計相應的進貨方案,并指出使該超市利潤最大的方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合題
(1)已知n正整數(shù),且 ,求 的值;
(2)如圖,AB、CD交于點O,∠AOE=90°,若∠AOC︰∠COE=5︰4,求∠AOD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】全民健身和醫(yī)療保健是社會普遍關注的問題,2014年,某社區(qū)共投入30萬元用于購買健身器材和藥品.
(1)若2014年社區(qū)購買健身器材的費用不超過總投入的,問2014年最低投入多少萬元購買藥品?
(2)2015年,該社區(qū)購買健身器材的費用比上一年增加50%,購買藥品的費用比上一年減少,但社區(qū)在這兩方面的總投入仍與2014年相同.
①求2014年社區(qū)購買藥品的總費用;
②據(jù)統(tǒng)計,2014年該社區(qū)積極健身的家庭達到200戶,社區(qū)用于這些家庭的藥品費用明顯減少,只占當年購買藥品總費用的,與2014年相比,如果2015年社區(qū)內健身家庭戶數(shù)增加的百分比與平均每戶健身家庭的藥品費用降低的百分比相同,那么,2015年該社區(qū)用于健身家庭的藥品費用就是當年購買健身器材費用的,求2015年該社區(qū)健身家庭的戶數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com