精英家教網 > 初中數學 > 題目詳情
已知:如圖,以定線段AB為直徑作半圓O,P為半圓上任意一點(異于A、B),過點P作半圓O的切線分別交過A、B兩點的切線于D、C,連接OC、BP,過點O作OM∥CD分別交BC與BP于點M、N.下列結論:
①S四邊形ABCD=
1
2
AB•CD;
②AD=AB;
③AD=ON;
④AB為過O、C、D三點的圓的切線.
其中正確的個數有( 。
分析:連接OD、AP,根據切線長定理求出AD=DP,CP=BC,根據面積公式判斷①即可;根據直角三角形斜邊大于直角邊即可判斷②;證△DPO和△PON全等證出DP=ON即可判斷③,證△DOC是直角三角形,取CD中點Q,證出OQ是半徑,證梯形ABCD,推出∠AOQ=90°即可判斷④.
解答:解:連接OD、AP,
∵DA、DP、BC分別是圓的切線,切點分別是A、P、B,
∴DA=DP,CP=CB,∠A=90°=∠B=∠DPO,
∴AD+BC=DP+CP=CD,
∴S四邊形ABCD=
1
2
(AD+BC)•AB=
1
2
AB•CD,∴①正確;
∵AD=DP<OD<AB,∴②錯誤;
∵AB是圓的直徑,
∴∠APB=90°,
∵DP=AD,AO=OP,
∴D、O在AP的垂直平分線上,
∴OD⊥AP,
∵∠DPO=∠APB=90°,
∴∠OPB=∠DPA=∠DOP,
∵OM∥CD,
∴∠POM=∠DPO=90°,
在△DPO和△NOP中
∠PON=∠DPO,OP=OP,∠DOP=∠OPN,
∴△DPO≌△NOP,
∴ON=DP=AD,∴③正確;
∵AP⊥OD,OA=OP,
∴∠AOD=∠POD,
同理∠BOC=∠POC,
∴∠DOC=
1
2
×180°=90°,
∴△CDO的外接圓的直徑是CD,
∵∠A=∠B=90°,
取CD的中點Q,連接OQ,
∵OA=OB,
∴AD∥OQ∥BC,
∴∠AOQ=90°,
∴④正確.
故選C.
點評:本題綜合考查了切線長定理,全等三角形的性質和判定,直角梯形,圓周角定理,線段的垂直平分線性質,切線的判定等知識點,本題難度較大,對學生有較高的要求,綜合性比較強,培養(yǎng)了學生綜合運用所學知識分析問題和解決問題的能力.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網已知:如圖,以定線段AB為直徑作半圓O,P為半圓上任意一點(異于A,B),過點P作半圓O的切線分別交過A,B兩點的切線于D,C,AC、BD相交于N點,連接ON、NP.下列結論:①四邊形ANPD是梯形;②ON=NP;③DP•PC為定值;④PA為∠NPD的平分線.其中一定成立的是(  )
A、①②B、②④C、①③④D、②③④

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網已知:如圖,以定線段AB為直徑作半圓O,P為半圓上任意一點(異于A、B),過點P作半圓O的切線分別交過A、B兩點的切線于D、C,AC、BD相交于N點,連接ON、NP.下列結論:①四邊形ANPD是梯形;②ON=NP;③PA為∠NPD的平分線.其中一定成立的是( 。
A、①②B、②③C、①③D、①

查看答案和解析>>

科目:初中數學 來源:2011-2012學年部分學校九年級下學期聯(lián)考數學卷 題型:選擇題

已知:如圖,以定線段AB為直徑作半圓O,P為半圓上任意一點(異于A、B),過點P作半圓O的切線分別交過A、B兩點的切線于D、C, AC、BD相交于N點,連結ON、NP,下列結論:①四邊形ANPD是梯形;  ② ON=NP;    ③ DP·PC為定值; ④PA為∠NPD的平分線.其中一定成立的是(       )

A. ①②③      B.②③④     C. ①③④     D. ①④

 

查看答案和解析>>

科目:初中數學 來源:第3章《圓》?碱}集(17):3.5 直線和圓的位置關系(解析版) 題型:選擇題

已知:如圖,以定線段AB為直徑作半圓O,P為半圓上任意一點(異于A、B),過點P作半圓O的切線分別交過A、B兩點的切線于D、C,AC、BD相交于N點,連接ON、NP.下列結論:①四邊形ANPD是梯形;②ON=NP;③PA為∠NPD的平分線.其中一定成立的是( )

A.①②
B.②③
C.①③
D.①

查看答案和解析>>

同步練習冊答案