如圖,已知⊙O是等腰直角三角形ADE的外接圓,∠ADE=90°,延長(zhǎng)ED到C使DC=AD,以AD,DC為鄰邊作正方形ABCD,連接AC,連接BE交AC于點(diǎn)H.求證:
(1)AC是⊙O的切線.
(2)HC=2AH.
(1)根據(jù)圓周角定理由∠ADE=90°得AE為⊙O的直徑,再根據(jù)等腰直角三角形得到∠EAD=45°,根據(jù)正方形得到∠DAC=45°,則∠EAC=90°,然后根據(jù)切線的判定定理即可得到結(jié)論。
(2)由AB∥CD得△ABH∽△CEH,則AH:CH=AB:ED,根據(jù)等腰直角三角形和正方形的性質(zhì)易得EC=2AB,則AH:CH=1:2
【解析】
分析:(1)根據(jù)圓周角定理由∠ADE=90°得AE為⊙O的直徑,再根據(jù)等腰直角三角形得到∠EAD=45°,根據(jù)正方形得到∠DAC=45°,則∠EAC=90°,然后根據(jù)切線的判定定理即可得到結(jié)論。
(2)由AB∥CD得△ABH∽△CEH,則AH:CH=AB:ED,根據(jù)等腰直角三角形和正方形的性質(zhì)易得EC=2AB,則AH:CH=1:2。
證明:(1)∵∠ADE=90°,∴AE為⊙O的直徑。
∵△ADE為等腰直角三角形,∴∠EAD=45°。
∵四邊形ABCD為正方形,∴∠DAC=45°。
∴∠EAC=45°+45°=90°!郃C⊥AE。
∵AE是⊙O的直徑,∴AC是⊙O的切線。
(2)∵四邊形ABCD為正方形,∴AB∥CD。
∴△ABH∽△CEH!郃H:CH=AB:ED。
∵△ADE為等腰直角三角形,∴AD=ED。
又∵AD=AB=DC,∴EC=2AB。
∴AH:CH=1:2,即HC=2AH。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
3 | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
A′E |
ED |
2 |
5 |
EF |
A′C′ |
5 |
7 |
5 |
7 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com