【題目】如圖,⊙O的半徑OD⊥弦AB于點C,連結AO并延長交⊙O于點E,連結EC.若AB=8,CD=2,則EC的長為( )
A. 2 B. 8 C. 2 D. 2
【答案】D
【解析】連結BE,設⊙O的半徑為R,由OD⊥AB,根據(jù)垂徑定理得AC=BC=AB=4,在Rt△AOC中,OA=R,OC=R-CD=R-2,根據(jù)勾股定理得到(R-2)2+42=R2,解得R=5,則OC=3,由于OC為△ABE的中位線,則BE=2OC=6,再根據(jù)圓周角定理得到∠ABE=90°,然后在Rt△BCE中利用勾股定理可計算出CE.
解:連結BE,設⊙O的半徑為R,如圖所示,
∵OD⊥AB,
∴AC=BC=AB=×8=4,
在Rt△AOC中,OA=R,OC=R-CD=R-2,
∵OC2+AC2=OA2,
∴(R-2)2+42=R2,解得R=5,
∴OC=5-2=3,
∴BE=2OC=6,
∵AE為直徑,
∴∠ABE=90°,
在Rt△BCE中,.
考點: 1.垂徑定理;2.勾股定理;3.三角形中位線定理;4.圓周角定理.
“點睛”本題考查的是垂徑定理及勾股定理,根據(jù)題意作出輔助線,構造出直角三角形是解答此題的關鍵.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知線段a,b,c,射線AM.
(1)用圓規(guī)和直尺按要求作圖(保留作圖痕跡):
①用圓規(guī)在射線AM上截取AB=a;
②在射線BM上用圓規(guī)依次截取BC=b,CD=b;
③在線段DA上用圓規(guī)截取DE=c.
則線段AE= .(用a,b,c的式子表示)
(2)在(1)中所作的圖形中一共能構成 條線段.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列命題:①過一點有且只有一條直線與已知直線平行;②過一點有且只有一條直線與已知直線垂直;③同旁內角互補;④垂直于同一條直線的兩條直線垂直.其中的假命題有( )
A.4 個B.3 個C.2 個D.1 個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,AC是對角線,今有較大的直角三角板,一邊始終經過點B,直角頂點P在射線AC上移動,另一邊交DC于Q.
(1)如圖1,當點Q在DC邊上時,探究PB與PQ所滿足的數(shù)量關系;
小明同學探究此問題的方法是:
過P點作PE⊥DC于E點,PF⊥BC于F點,
根據(jù)正方形的性質和角平分線的性質,得出PE=PF,
再證明△PEQ≌△PFB,可得出結論,他的結論應是
(2)如圖2,當點Q落在DC的延長線上時,猜想并寫出PB與PQ滿足的數(shù)量關系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AC⊥BC,C為垂足,CD⊥AB,D為垂足,BC=8,CD=4.8,BD=6.4,AD=3.6,AC= 6,那么點C到AB的距離是_______,點A到BC的距離是________,點B到CD 的距離是_____,A、B兩點的距離是_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列事件中是隨機事件的是( )
A.校運會上立定跳遠成績?yōu)?/span>10米
B.在只裝有5個紅球的袋中,摸出一個紅球
C.慈溪市明年五一節(jié)是晴天
D.在標準大氣壓下,氣溫3°C 時,冰熔化為水
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,要設計一幅長為3xcm、寬為2ycm的長方形圖案,其中有兩橫兩豎的彩條,橫彩條的寬度為acm,豎彩條的寬度為bcm,問空白區(qū)域的面積是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com