【題目】小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)yx+的圖象與性質(zhì)進(jìn)行了探究.

下面是小明的探究過程,請補(bǔ)充完整:

1)函數(shù)yx+的自變量x的取值范圍是   

2)下表列出了yx的幾組對應(yīng)值,請寫出m,n的值:m   n   ;

3)如圖,在平面直角坐標(biāo)系xOy中,描出了以上表中各對對應(yīng)值為坐標(biāo)的點(diǎn),根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象;

4)結(jié)合函數(shù)的圖象,請完成:

①當(dāng)y=﹣時(shí),x   

②寫出該函數(shù)的一條性質(zhì)   

③若方程x+t有兩個(gè)不相等的實(shí)數(shù)根,則t的取值范圍是   

【答案】1;(2;(3)見解析;(4)①﹣4 ;②圖象在一,三象限,且關(guān)于原點(diǎn)對稱;③

【解析】

1)由x在分母上,可得出x≠0;

2)把x、3分別代入yx+即可求出m、n的值;

3)連點(diǎn)成線即可畫出函數(shù)圖象;

4)①把y=﹣代入函數(shù)關(guān)系式,解方程即可求出x值;

②可從函數(shù)圖象的位置和對稱性的角度解答;

③可以利用函數(shù)圖象,找出函數(shù)yx+yt有兩個(gè)交點(diǎn)時(shí)t的取值范圍即可.

解:(1)∵x在分母上,∴x≠0

故答案為:x≠0;

2)當(dāng)x時(shí),yx+

當(dāng)x3時(shí),yx+

故答案為:;;

3)函數(shù)圖象如圖所示;

4)①當(dāng)y=﹣時(shí),有x+=﹣,

解得:x1=﹣4x2=﹣

故答案為:﹣4或﹣;

②觀察函數(shù)圖象可知:函數(shù)圖象在第一、三象限且關(guān)于原點(diǎn)對稱.

故答案為:函數(shù)圖象在第一、三象限且關(guān)于原點(diǎn)對稱.

③∵x+t有兩個(gè)不相等的實(shí)數(shù)根,即函數(shù)yx+yt有兩個(gè)交點(diǎn),

∴由圖象可得:t<﹣2t2

故答案為:t<﹣2t2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,,點(diǎn)邊上的一個(gè)動點(diǎn),將四邊形沿直線折疊,得到四邊形,點(diǎn)、的對應(yīng)點(diǎn)分別為點(diǎn).直線于點(diǎn)

1)求證:;

2)連接,已知

如圖,當(dāng),時(shí),求的長度;

如圖,當(dāng)四邊形為菱形時(shí),請直接寫出的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,點(diǎn)O是∠ABC和∠ACB兩個(gè)內(nèi)角平分線的交點(diǎn),過點(diǎn)OEFBC分別交AB,AC于點(diǎn)EF,已知ABC的周長為8BCxAEF的周長為y,則表示yx的函數(shù)圖象大致是( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于一個(gè)函數(shù),自變量xa時(shí),函數(shù)值y也等于a,我們稱a為這個(gè)函數(shù)的不動點(diǎn).如果二次函數(shù)yx2+2x+c有兩個(gè)相異的不動點(diǎn)x1、x2,且x11x2,則c的取值范圍是( )

A. c<﹣3B. c<﹣2C. cD. c1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC的紙片中,∠C90°,AC5,AB13.點(diǎn)D在邊BC上,以AD為折痕將△ADB折疊得到△ADB′,AB′與邊BC交于點(diǎn)E.若△DEB′為直角三角形,則BD的長是___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為6,點(diǎn)EBC的中點(diǎn),連接AE與對角線BD交于點(diǎn)G,連接CG并延長,交AB于點(diǎn)F,連接DECF于點(diǎn)H,連接AH.以下結(jié)論:①CFDE;②;③ADAH;④GH,其中正確結(jié)論的序號是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小亮為了測量校園里教學(xué)樓AB的高度,將測角儀CD豎直放置在與教學(xué)樓水平距離為18m的地面上,若測角儀的高度為1.5m,測得教學(xué)樓的頂部A處的仰角為30°,則教學(xué)樓的高度是(    

A.55.5mB.54mC.19.5mD.18m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1,在正方形中,點(diǎn)、分別是、邊上的動點(diǎn),且,求證:

   

2)如圖2,在正方形中,如果點(diǎn)、分別是、延長線上的動點(diǎn),且,則、、之間數(shù)量關(guān)系是什么?請寫出證明過程.

3)如圖1,若正方形的邊長為6,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線yax2+bx+c與兩坐標(biāo)軸分別交于點(diǎn)A、BC,直線y=﹣x+4經(jīng)過點(diǎn)B,與y軸交點(diǎn)為D,M3,﹣4)是拋物線的頂點(diǎn).

1)求拋物線的解析式.

2)已知點(diǎn)N在對稱軸上,且AN+DN的值最。簏c(diǎn)N的坐標(biāo).

3)在(2)的條件下,若點(diǎn)E與點(diǎn)C關(guān)于對稱軸對稱,請你畫出△EMN并求它的面積.

4)在(2)的條件下,在坐標(biāo)平面內(nèi)是否存在點(diǎn)P,使以AB、NP為頂點(diǎn)的四邊形是平行四邊形?若存在,請直接寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案