【題目】如圖,△ABC中,∠BAC=60°,∠ABC=45°,AB=2 ,D是線段BC上的一個動點,以AD為直徑畫⊙O分別交AB,AC于E,F(xiàn),連接EF,則線段EF長度的最小值為 .
【答案】
【解析】解:由垂線段的性質(zhì)可知,當(dāng)AD為△ABC的邊BC上的高時,直徑AD最短, 如圖,連接OE,OF,過O點作OH⊥EF,垂足為H,
∵在Rt△ADB中,∠ABC=45°,AB=2 ,
∴AD=BD=2,即此時圓的直徑為2,
由圓周角定理可知∠EOH= ∠EOF=∠BAC=60°,
∴在Rt△EOH中,EH=OEsin∠EOH=1× = ,
由垂徑定理可知EF=2EH= .
故答案為: .
由垂線段的性質(zhì)可知,當(dāng)AD為△ABC的邊BC上的高時,直徑AD最短,此時線段EF=2EH=20Esin∠EOH=20Esin60°,因此當(dāng)半徑OE最短時,EF最短,連接OE,OF,過O點作OH⊥EF,垂足為H,在Rt△ADB中,解直角三角形求直徑AD,由圓周角定理可知∠EOH= ∠EOF=∠BAC=60°,在Rt△EOH中,解直角三角形求EH,由垂徑定理可知EF=2EH.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,ABCO的頂點A,B的坐標(biāo)分別是A(3,0),B(0,2).動點P在直線y= x上運(yùn)動,以點P為圓心,PB長為半徑的⊙P隨點P運(yùn)動,當(dāng)⊙P與ABCO的邊相切時,P點的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+(2x+1)x+k2=0①有兩個不相等的實數(shù)根.
(1)求k的取值范圍;
(2)設(shè)方程①的兩個實數(shù)根分別為x1 , x2 , 當(dāng)k=1時,求x12+x22的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將三角尺的直角頂點放在直線a上,a∥b,∠1=50°,∠2=60°,則∠3的度數(shù)為( )
A.50°
B.60°
C.70°
D.80°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=10,CB=16,分別以AB、AC為直徑作半圓,則圖中陰影部分面積是( )
A.50π﹣48
B.25π﹣48
C.50π﹣24
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個結(jié)論:①abc<0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b<m (am+b)(m≠1的實數(shù)).其中正確結(jié)論的有( )
A.①②③
B.①③④
C.③④⑤
D.②③⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,△ABC是等邊三角形,過AB邊上的點D作DG∥BC,交AC于點G,在GD的延長線上取點E,使DE=CG,連接AE、CD.
(1)求證:△AGE≌△DAC;
(2)過E做EF∥DC.交BC于F.連接AF.判斷△AEF是怎樣的三角形.并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,設(shè)AB=c,BC=a,AC=b,中線AE,BF相交于G,若AE⊥BF.
(1)①當(dāng)∠ABF=60°,c=4時,求a與b的值;
②當(dāng)∠ABF=30°,c=2 時,a= , b=;
(2)由(1)獲得啟示,猜想a2 , b2 , c2三者之間滿足數(shù)量關(guān)系式是;(直接寫出結(jié)果)
(3)如圖2,在平行四邊形ABCD中,AB=4 ,BC=3 ,點E,F(xiàn),G分別是AD,AB,CD的中點,CF與BG交于P點,若EF⊥FC.利用(2)中的結(jié)論,求BG的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com