【題目】已知:如圖①,將∠D=60°的菱形ABCD沿對(duì)角線AC剪開(kāi),將△ADC沿射線DC方向平移,得到△BCE,點(diǎn)M為邊BC上一點(diǎn)(點(diǎn)M不與點(diǎn)B、點(diǎn)C重合),將射線AM繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°,與EB的延長(zhǎng)線交于點(diǎn)N,連接MN.
(1)①求證:∠ANB=∠AMC;
②探究△AMN的形狀;
(2)如圖②,若菱形ABCD變?yōu)檎叫?/span>ABCD,將射線AM繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°,原題其他條件不變,(1)中的①、②兩個(gè)結(jié)論是否仍然成立?若成立,請(qǐng)直接寫出結(jié)論;若不成立,請(qǐng)寫出變化后的結(jié)論并證明.
【答案】(1)①證明見(jiàn)解析;②△AMN是等邊三角形,理由見(jiàn)解析;(2)見(jiàn)解析.
【解析】
(1)①先由菱形可知四邊相等,再由∠D=60°得等邊△ADC和等邊△ABC,則對(duì)角線AC與四邊都相等,利用ASA證明△ANB≌△AMC,得結(jié)論;
②根據(jù)有一個(gè)角是60°的等腰三角形是等邊三角形得出:△AMN是等邊三角形
(2)①成立,根據(jù)正方形得45°角和射線AM繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°,證明△ANB∽△AMC,得∠ANB=∠AMC;
②不成立,△AMN是等腰直角三角形,利用①中的△ANB∽△AMC,得比例式進(jìn)行變形后,再證明△NAM∽△BAD,則△AMN是等腰直角三角形
(1)如圖1,①∵四邊形ABCD是菱形,
∴AB=BC=CD=AD,
∵∠D=60°,
∴△ADC和△ABC是等邊三角形,
∴AB=AC,∠BAC=60°,
∵∠NAM=60°,
∴∠NAB=∠CAM,
由△ADC沿射線DC方向平移得到△BCE,可知∠CBE=60°,
∵∠ABC=60°,
∴∠ABN=60°,
∴∠ABN=∠ACB=60°,
∴△ANB≌△AMC,
∴∠ANB=∠AMC;
②如圖1,△AMN是等邊三角形,理由是:
由∴△ANB≌△AMC,
∴AM=AN,
∵∠NAM=60°,
∴△AMN是等邊三角形;
(2)①如圖2,∠ANB=∠AMC成立,理由是:
在正方形ABCD中,
∴∠BAC=∠DAC=∠BCA=45°,
∵∠NAM=45°,
∴∠NAB=∠MAC,
由平移得:∠EBC=∠CAD=45°,
∵∠ABC=90°,
∴∠ABN=180°﹣90°﹣45°=45°,
∴∠ABN=∠ACM=45°,
∴△ANB∽△AMC,
∴∠ANB=∠AMC;
②如圖2,不成立,
△AMN是等腰直角三角形,理由是:
∵△ANB∽△AMC,
∴ ,
∴ ,
∵∠NAM=∠BAC=45°,
∴△NAM∽△BAC,
∴∠ANM=∠ABC=90°,
∴△AMN是等腰直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)4的正方形ABCD中,E是邊BC的中點(diǎn),將△CDE沿直線DE折疊后,點(diǎn)C落在點(diǎn)F處,冉將其打開(kāi)、展平,得折痕DE。連接CF、BF、EF,延長(zhǎng)BF交AD于點(diǎn)G。則下列結(jié)論:①BG= DE;②CF⊥BG;③sin∠DFG= ;④S△DFG=.其中正確的有( )
A. 1個(gè)
B. 2個(gè)
C. 3個(gè)
D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在一居民樓AB和塔CD之間有一棵樹(shù)EF,從樓頂A處經(jīng)過(guò)樹(shù)頂E點(diǎn)恰好看到塔的底部D點(diǎn),且俯角α為38°.從距離樓底B點(diǎn)2米的P處經(jīng)過(guò)樹(shù)頂E點(diǎn)恰好看到塔的頂部C點(diǎn),且仰角β為28°.已知樹(shù)高EF=8米,求塔CD的高度.(參考數(shù)據(jù):sin38°≈0.6,cos38°≈0.8,tan38°≈0.8,sin28°≈0.5,cos28°≈0.9,tan28°≈0.5)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的對(duì)稱中心在坐標(biāo)原點(diǎn),AB∥x軸,AD,BC分別與x軸交于E,F,連接BE,DF,若正方形ABCD的頂點(diǎn)B,D在雙曲線y=上,實(shí)數(shù)a滿足a1﹣a=1,則四邊形DEBF的面積是( )
A. B. C. 1D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果一條拋物線y=ax2+bx+c(a≠0)與x軸有兩個(gè)交點(diǎn),那么以拋物線的頂點(diǎn)和這兩個(gè)交點(diǎn)為頂點(diǎn)的三角形稱為這條拋物線的“拋物線三角形”,[a,b,c]稱為“拋物線系數(shù)”.
(1)任意拋物線都有“拋物線三角形”是______(填“真”或“假”)命題;
(2)若一條拋物線系數(shù)為[1,0,-2],則其“拋物線三角形”的面積為________;
(3)若一條拋物線系數(shù)為[-1,2b,0],其“拋物線三角形”是個(gè)直角三角形,求該拋物線的解析式;
(4)在(3)的前提下,該拋物線的頂點(diǎn)為A,與x軸交于O,B兩點(diǎn),在拋物線上是否存在一點(diǎn)P,過(guò)P作PQ⊥x軸于點(diǎn)Q,使得△BPQ∽△OAB,如果存在,求出P點(diǎn)坐標(biāo),如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在二次函數(shù)y=ax2+bx+c(a≠0)的圖象中,小明同學(xué)觀察得出了下面幾條信息:①b2﹣4ac>0;②abc<0;③;④b2=4a(c﹣1);⑤關(guān)于x的一元二次方程ax2+bx+c=3無(wú)實(shí)數(shù)根,共中信息錯(cuò)誤的個(gè)數(shù)為( )
A.4B.3C.2D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知拋物線y=ax2+bx+3(a≠0)與x軸交于點(diǎn)A(1,0)和點(diǎn)B(﹣3,0),與y軸交于點(diǎn)C.
(1)求拋物線的解析式;
(2)設(shè)拋物線的對(duì)稱軸與x軸交于點(diǎn)M,問(wèn)在對(duì)稱軸上是否存在點(diǎn)P,使△CMP為等腰三角形?若存在,請(qǐng)直接寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)在(1)中拋物線的對(duì)稱軸上是否存在點(diǎn)Q,使得△QAC的周長(zhǎng)最?若存在,求出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(4)如圖2,若點(diǎn)E為第二象限拋物線上一動(dòng)點(diǎn),連接BE、CE,求四邊形BOCE面積的最大值,并求此時(shí)E點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知⊙O的半徑為5,P是直徑AB的延長(zhǎng)線上一點(diǎn),BP=1,CD是⊙O的一條弦,CD=6,以PC,PD為相鄰兩邊作PCED,當(dāng)C,D點(diǎn)在圓周上運(yùn)動(dòng)時(shí),線段PE長(zhǎng)的最大值與最小值的差等于_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題提出
(1)如圖①,在△ABC中,∠A=120°,AB=AC=5,則△ABC的外接圓半徑R的值為 .
問(wèn)題探究
(2)如圖②,⊙O的半徑為13,弦AB=24,M是AB的中點(diǎn),P是⊙O上一動(dòng)點(diǎn),求PM的最大值.
問(wèn)題解決
(3)如圖③所示,AB、AC、BC是某新區(qū)的三條規(guī)劃路其中,AB=6km,AC=3km,∠BAC=60°,BC所對(duì)的圓心角為60°.新區(qū)管委會(huì)想在BC路邊建物資總站點(diǎn)P,在AB、AC路邊分別建物資分站點(diǎn)E、F.也就是,分別在、線段AB和AC上選取點(diǎn)P、E、F.由于總站工作人員每天要將物資在各物資站點(diǎn)間按P→E→F→P的路徑進(jìn)行運(yùn)輸,因此,要在各物資站點(diǎn)之間規(guī)劃道路PE、EF和FP.為了快捷環(huán)保和節(jié)約成本要使得線段PE、EF、FP之和最短,試求PE+EF+FP的最小值(各物資站點(diǎn)與所在道路之間的距離、路寬均忽略不計(jì)).
圖① 圖② 圖③
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com