【題目】如圖,點O是等邊△ABC內一點,D是△ABC外的一點,∠AOB110°,∠BOCα,△BOC≌△ADC,∠OCD60°,連接OD

1)求證:△OCD是等邊三角形;

2)當α150°時,試判斷△AOD的形狀,并說明理由;

3)探究:當α為多少度時,△AOD是等腰三角形.

【答案】(1)詳見解析;(2)AOD是直角三角形,理由詳見解析;(3)當α110°或125°或140°時,△AOD是等腰三角形.

【解析】

1)根據(jù)全等三角形的性質得到OC=DC,根據(jù)等邊三角形的判定定理證明即可;

2)根據(jù)全等三角形的性質得到∠ADC=BOC=∠α=150°,結合圖形計算即可;

3)分∠AOD=ADO、∠AOD=OAD、∠ADO=OAD三種情況,根據(jù)等腰三角形的判定定理計算即可.

解:(1)∵△BOC≌△ADC,

OCDC

∵∠OCD60°,

∴△OCD是等邊三角形.

2)△AOD直角三角形

理由如下:

∵△OCD是等邊三角形,

∴∠ODC60°,

∵△BOC≌△ADC,∠α150°,

∴∠ADC=∠BOC=∠α150°,

∴∠ADO=∠ADC﹣∠ODC150°﹣60°=90°,

∴△AOD直角三角形

3)∵△OCD是等邊三角形,

∴∠COD=∠ODC60°.

∵∠AOB110°,∠ADC=∠BOCα,

∴∠AOD360°﹣∠AOB﹣∠BOC﹣∠COD360°﹣110°﹣α60°=190°﹣α

ADO=∠ADC﹣∠ODCα60°,

∴∠OAD180°﹣∠AOD﹣∠ADO180°﹣(190°﹣α)﹣(α60°)=50°.

當∠AOD=∠ADO時,190°﹣αα60°,

α125°.

當∠AOD=∠OAD時,190°﹣α50°,

α140°.

當∠ADO=∠OAD時,

α60°=50°,

α110°.

綜上所述:當α110°或125°或140°時,△AOD是等腰三角形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于原點及點A,且經(jīng)過點B(4,8),對稱軸為直線x=﹣2.

(1)求拋物線的解析式;

(2)設直線y=kx+4與拋物線兩交點的橫坐標分別為x1,x2(x1<x2),當時,求k的值;

(3)連接OB,點Px軸下方拋物線上一動點,過點POB的平行線交直線AB于點Q,當SPOQ:SBOQ=1:2時,求出點P的坐標.

(坐標平面內兩點M(x1,y1),N(x2,y2)之間的距離MN=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】瑞士的一位中學教師巴爾末從光譜數(shù)據(jù),,…中,成功地發(fā)現(xiàn)了其規(guī)律,從而得到了巴爾末公式,繼而打開了光譜奧妙的大門.請你根據(jù)這個規(guī)律寫出第6個數(shù)為____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰△ABC中,ABAC∠BAC50°∠BAC的平分線與AB的中垂線交于點O,點C沿EF折疊后與點O重合,則∠CEF的度數(shù)是   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】發(fā)現(xiàn)思考:已知等腰三角形ABC的兩邊分別是方程x2﹣7x+10=0的兩個根,求等腰三角形ABC三條邊的長各是多少?下邊是涵涵同學的作業(yè),老師說他的做法有錯誤,請你找出錯誤之處并說明錯誤原因.

涵涵的作業(yè)

解:x2﹣7x+10=0

a=1 b=﹣7 c=10

b2﹣4ac=9>0

x==

x1=5,x2=2

所以,當腰為5,底為2時,等腰三角形的三條邊為5,5,2.

當腰為2,底為5時,等腰三角形的三條邊為2,2,5.

探究應用:請解答以下問題:

已知等腰三角形ABC的兩邊是關于x的方程x2﹣mx+=0的兩個實數(shù)根.

(1)當m=2時,求ABC的周長;

(2)當ABC為等邊三角形時,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,給出下列四組條件:①AB=DEBC=EF,AC=DF ②AB=DE,∠B=∠E,BC=EF;③∠B=∠EBC=EF,∠C=∠F ④AB=DE,AC=DF,∠B=∠E.能使△ABC≌△DEF_____組.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖表示的是用火柴棒搭成的一個個圖形,第一個圖形用了5根火柴,第二個圖形用了8根火柴,,用281根火柴棒搭成了第(個圖形.

A. 93 B. 94 C. 80 D. 81

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某數(shù)學興趣小組想測量一棵樹CD的高度,他們先在點A處測得樹頂C的仰角為30°,然后沿AD方向前行10m,到達B點,在B處測得樹頂C的仰角高度為60°(A、B、D三點在同一直線上).請你根據(jù)他們測量數(shù)據(jù)計算這棵樹CD的高度(結果精確到0.1m).(參考數(shù)據(jù):≈1.414,≈1.732)

【答案】8.7

【解析】試題分析:首先利用三角形的外角的性質求得∠ACB的度數(shù),得到BC的長度,然后在直角△BDC中,利用三角函數(shù)即可求解.

試題解析:∵∠CBD=∠A+∠ACB,

∴∠ACB=∠CBD﹣∠A=60°﹣30°=30°,

∴∠A=∠ACB,

∴BC=AB=10(米).

在直角△BCD中,CD=BCsin∠CBD=10×=5≈5×1.732=8.7(米).

答:這棵樹CD的高度為8.7米.

考點:解直角三角形的應用

型】解答
束】
23

【題目】如圖,在平面直角坐標系中,拋物線y=﹣x2+ax+b交x軸于A(1,0),B(3,0)兩點,點P是拋物線上在第一象限內的一點,直線BP與y軸相交于點C.

(1)求拋物線y=﹣x2+ax+b的解析式;

(2)當點P是線段BC的中點時,求點P的坐標;

(3)在(2)的條件下,求sin∠OCB的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】|a|+|b|=|a+b|,則a,b關系是( 。

A. ab的絕對值相等

B. a,b異號

C. a+b的和是非負數(shù)

D. ab同號或a、b其中一個為0

查看答案和解析>>

同步練習冊答案