【題目】如圖①,在△ABC中,CD、CE分別是△ABC的高和角平分線,∠BAC=α,∠B=β(α>β).
(1)若α=70°,β=40°,求∠DCE的度數(shù);
(2)試用α、β的代數(shù)式表示∠DCE的度數(shù)(直接寫出結(jié)果);
(3)如圖②,若CE是△ABC外角∠ACF的平分線,交BA延長線于點E,且α﹣β=30°,求∠DCE的度數(shù).
【答案】(1)15°;(2);(3)75°.
【解析】
(1)三角形的內(nèi)角和是180°,已知∠BAC與∠ABC的度數(shù),則可求出∠BAC的度數(shù),然后根據(jù)角平分線的性質(zhì)求出∠BCE,再利用三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和求出∠DEC的度數(shù),進(jìn)而求出∠DCE的度數(shù);
(2)∠DCE= .
(3)作∠ACB的內(nèi)角平分線CE′,根據(jù)角平分線的性質(zhì)求出∠ECE′=∠ACE+∠ACE′=∠ACB+∠ACF=90°,進(jìn)而求出∠DCE的度數(shù).
解:(1)因為∠ACB=180°﹣(∠BAC+∠B)=180°﹣(70°+40°)=70°,
又因為CE是∠ACB的平分線,
所以.
因為CD是高線,
所以∠ADC=90°,
所以∠ACD=90°﹣∠BAC=20°,
所以∠DCE=∠ACE﹣∠ACD=35°﹣20°=15°.
(2).
(3)如圖,作∠ACB的內(nèi)角平分線CE′,
則.
因為CE是∠ACB的外角平分線,
所以∠ECE′=∠ACE+∠ACE′===90°,
所以∠DCE=90°﹣∠DCE′=90°﹣15°=75°.
即∠DCE的度數(shù)為75°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某服裝銷售店到生產(chǎn)廠家選購A,B兩種品牌的服裝,若購進(jìn)A品牌服裝1套,B品牌服裝1套,共需205元;若購進(jìn)A品牌服裝2套,B品牌服裝3套,共需495元.
(1)求A,B兩種品牌的服裝每套進(jìn)價分別為多少元?
(2)若A品牌服裝每套售價為150元,B品牌服裝每套售價為100元,根據(jù)市場的需求,現(xiàn)決定購進(jìn)B品牌服裝數(shù)量比A品牌服裝數(shù)量的2倍還多3套.如果購進(jìn)B品牌服裝不多于47套,且服裝全部售出后,獲利總額不少于1245元,問共有哪幾種進(jìn)貨方案?哪種進(jìn)貨方案獲利最多?最多是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,過頂點A的直線DE∥BC,∠ABC、∠ACB的平分線分別交DE于點E、D,若AC=3,AB=4,則DE的長為( 。
A. 6B. 7C. 8D. 9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在五一期間,小明、小亮等同學(xué)隨家長一同到某公園游玩,下面是購買門票時,小明與他爸爸的對話(如圖),試根據(jù)圖中的信息,解答下列問題:
(1)小明他們一共去了幾個成人,幾個學(xué)生?
(2)請你幫助小明算一算,用哪種方式購票更省錢?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校七年級共有500名學(xué)生,在“世界讀書日”前夕,開展了“閱讀助我成長”的讀書活動.為了解該年級學(xué)生在此次活動中課外閱讀情況,童威隨機(jī)抽取m名學(xué)生,調(diào)查他們課外閱讀書籍的數(shù)量,將收集的數(shù)據(jù)整理成如下統(tǒng)計表和扇形圖.
學(xué)生讀書數(shù)量統(tǒng)計表
閱讀量/本 | 學(xué)生人數(shù) |
1 | 15 |
2 | a |
3 | b |
4 | 5 |
(1)直接寫出m、a、b的值;
(2)估計該年級全體學(xué)生在這次活動中課外閱讀書籍的總量大約是多少本?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一個邊長為1的正方形紙片分割成7個部分,第①部分是邊長不1的正方形紙片面積的一半,第②部分是第①部分面積的半,第③部分是第③部分面積的一半,…,依次類推.
(1)陰影部分的面積是多少?
(2)受此啟發(fā),你能求出的值嗎?
(3)請你利用圖中右側(cè)的正方形,再設(shè)計能求的值的幾何圖形.(只畫出圖形即可)
(4)根據(jù)以上規(guī)律, .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線L:y=﹣x2+bx+c經(jīng)過點A(0,1),與它的對稱軸直線x=1交于點B.
(1)直接寫出拋物線L的解析式;
(2)如圖1,過定點的直線y=kx﹣k+4(k<0)與拋物線L交于點M、N.若△BMN的面積等于1,求k的值;
(3)如圖2,將拋物線L向上平移m(m>0)個單位長度得到拋物線L1,拋物線L1與y軸交于點C,過點C作y軸的垂線交拋物線L1于另一點D.F為拋物線L1的對稱軸與x軸的交點,P為線段OC上一點.若△PCD與△POF相似,并且符合條件的點P恰有2個,求m的值及相應(yīng)點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,已知∠ABC=60°,∠ACB=50°,BE是AC上的高,CF是AB上的高,H是BE和CF的交點.求∠ABE、∠ACF和∠BHC的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com