【題目】如圖,在ABC中,點D是邊BC的中點,DE⊥AC、DF⊥AB,垂足分別是E、F,且BF=CE.

(1)求證:DE=DF;

(2)當(dāng)A=90°時,試判斷四邊形AFDE是怎樣的四邊形,并證明你的結(jié)論.

【答案】(1)證明見解析;(2)四邊形AFDE是正方形.理由見解析.

【解析】

試題

(1)由已知條件可由“HL”證Rt△DBF≌Rt△DCE,從而可得:DE=DF;

(2)由∠A=∠DFA=∠DEA=90°可證得四邊形AFDE是矩形,結(jié)合DF=DE,可得四邊形AFDE是正方形.

試題解析

(1)∵DBC的中點,

∴BD=CD,

∵DE⊥AC,DF⊥AB,

∴∠BFD=∠CED=90°,

Rt△BDFRt△CDE中, ,

∴Rt△BDF≌Rt△CDE(HL),

∴DE=DF;

(2)當(dāng)∠A=90°四邊形AFDE是正方形.理由如下

∵DE⊥AC,DF⊥AB,

∴∠DEA=∠DFA=90°,

∵∠A=90°,

四邊形AFDE是矩形,

∵DF=DE,

四邊形AFDE是正方形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩校分別有一男一女共4名教師報名到農(nóng)村中學(xué)支教.

(1)若從甲、乙兩校報名的教師中分別隨機選1名,則所選的2名教師性別相同的概率是

(2)若從報名的4名教師中隨機選2名,用列表或畫樹狀圖的方法求出這2名教師來自同一所學(xué)校的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小賢與小杰在探究某類二次函數(shù)問題時,經(jīng)歷了如下過程:

求解體驗:

1)已知拋物線y=﹣x2+bx3經(jīng)過點(﹣1,0),則b   ,頂點坐標(biāo)   ,該拋物線關(guān)于點(0,1)成中心對稱的拋物線的表達(dá)式是   

抽象感悟:

我們定義:對于拋物線yax2+bx+ca0),以y軸上的點M0,m)為中心,作該拋物線關(guān)于點M對稱的拋物線y',則我們又稱拋物線y'為拋物線y的“衍生拋物線”,點M為“衍生中心”.

2)已知拋物線y=﹣x22x+5關(guān)于點(0,m)的衍生拋物線為y',若這兩條拋物線有交點,求m的取值范圍.

問題解決:

3)已知拋物線yax2+2axba0)若拋物線y的衍生拋物線為y'bx22bx+a2b0),兩拋物線有兩個交點,且恰好是它們的頂點,求a,b的值及衍生中心的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點C為ABD外接圓上的一動點點C不在上,且不與點B,D重合,ACB=ABD=45°

1求證:BD是該外接圓的直徑;

2連結(jié)CD,求證:AC=BC+CD;

3ABC關(guān)于直線AB的對稱圖形為ABM,連接DM,試探究三者之間滿足的等量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩張等寬的紙條交叉重疊在一起,重疊的部分為四邊形ABCD,若測得AC之間的距離為12cm,點B,D之間的距離為16m,則線段AB的長為  

A. B. 10cmC. 20cmD. 12cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,ABAC3,BC6,且若CD經(jīng)過ABC的外心OABD,則CD_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=x2+2x﹣3x軸交于A,B兩點(點A在點B的左側(cè)),將這條拋物線向右平移mm>0)個單位長度,平移后的拋物線與x軸交于C,D兩點(點C在點D的左側(cè)),若B,C是線段AD的三等分點,則m的值為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋?/span>

1)(x+6251

2x22x2x1

3x2x2

4xx7)=87x

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將兩塊全等的三角板如圖①擺放,其中∠A1CB1=ACB=90°,A1=A=30°.

(1)將圖①中的A1B1C順時針旋轉(zhuǎn)45°得圖②,點P1A1CAB的交點,點QA1B1BC的交點,求證:CP1=CQ;

(2)在圖②中,若AP1=2,則CQ等于多少?

查看答案和解析>>

同步練習(xí)冊答案