【題目】我校八年級的體育老師為了了解本年級學(xué)生喜歡球類運動的情況,抽取了該年級部分學(xué)生對籃球、足球、排球、乒乓球的愛好情況進(jìn)行了調(diào)查,并將調(diào)查結(jié)果繪制成如圖兩幅不完整的統(tǒng)計圖(說明:每位學(xué)生只選一種自己最喜歡的一種球類),請根據(jù)這兩幅圖形解答下列問題:

1)在本次調(diào)查中,體育老師一共調(diào)查了多少名學(xué)生?

2)將兩個不完整的統(tǒng)計圖補充完整;

3)求出乒乓球在扇形中所占的圓心角的度數(shù)?

4)已知該校有760名學(xué)生,請你根據(jù)調(diào)查結(jié)果估計愛好足球和排球的學(xué)生共計多少人?

【答案】1200人;(260人,30%, 10%,20人,80人,圖見解析;(3108°;(4228人.

【解析】

1)讀圖可知喜歡足球的有40人,占20%,求出總?cè)藬?shù);

2)根據(jù)總?cè)藬?shù)求出喜歡乒乓球的人數(shù)所占的百分比,得出喜歡排球的人數(shù)和所占的百分比,再根據(jù)喜歡籃球的人數(shù)所占的百分比求出喜歡籃球的人數(shù),從而補全統(tǒng)計圖;

3)根據(jù)喜歡乒乓球的人數(shù)所占的百分比,即可得到乒乓球在扇形中所占的圓心角的度數(shù);

4)根據(jù)愛好足球和排球的學(xué)生所占的百分比,即可估計愛好足球和排球的學(xué)生總數(shù).

解:(1)∵喜歡足球的有40人,占20%,

∴一共調(diào)查了:40÷20%=200(人),

2)∵喜歡乒乓球人數(shù)為60人,

∴所占百分比為:×100%=30%,

∴喜歡排球的人數(shù)所占的百分比是1-20%-30%-40%=10%,

∴喜歡排球的人數(shù)為:200×10%=20(人),

∴喜歡籃球的人數(shù)為200×40%=80(人),

由以上信息補全條形統(tǒng)計圖得:

3)乒乓球在扇形中所占的圓心角的度數(shù)為:30%×360°=108°;

4)愛好足球和排球的學(xué)生共計:760×20%+10%=228(人).

故答案為:(1200人;(260人,30%, 10%20人,80人,圖見解析;(3108°;(4228人.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓E是三角形ABC的外接圓, BAC=45°,AOBCO,且BO=2,CO=3,分別以BC、AO所在直線建立x.

1)求三角形ABC的外接圓直徑;

2)求過ABC三點的拋物線的解析式;

3)設(shè)P是(2)中拋物線上的一個動點,且三角形AOP為直角三角形,則這樣的點P有幾個?(只需寫出個數(shù),無需解答過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, BAD CAE 90 AB AD , AE AC , ABD ADB ACE AEC 45 ,AF CF ,垂足為 F .

1)若 AC 10 ,求四邊形 ABCD 的面積;

2)求證: CE 2 AF .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(1,2)且與x軸交點的橫坐標(biāo)分別為x1,x2,其中﹣1<x1<0.1<x2<2.下列結(jié)論:4a+2b+c<0;2a+b<0;b2+8a>4ac;

a<﹣1;其中結(jié)論正確的有( )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,CD與⊙O相切于點C,與AB的延長線交于點D,DEAD且與AC的延長線交于點E.

(1)求證:DCDE

(2)tanCAB,AB=3,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市為慶祝開業(yè)舉辦大酬賓抽獎活動,凡在開業(yè)當(dāng)天進(jìn)店購物的顧客,都能獲得一次抽獎的機(jī)會,抽獎規(guī)則如下:在一個不透明的盒子里裝有分別標(biāo)有數(shù)字1、2、344個小球,它們的形狀、大小、質(zhì)地完全相同,顧客先從盒子里隨機(jī)取出一個小球,記下小球上標(biāo)有的數(shù)字,然后把小球放回盒子并攪拌均勻,再從盒子中隨機(jī)取出一個小球,記下小球上標(biāo)有的數(shù)字,并計算兩次記下的數(shù)字之和,若兩次所得的數(shù)字之和為8,則可獲得50元代金券一張;若所得的數(shù)字之和為6,則可獲得30元代金券一張;若所得的數(shù)字之和為5,則可獲得15元代金券一張;其他情況都不中獎.

1)請用列表或樹狀圖(樹狀圖也稱樹形圖)的方法(選其中一種即可),把抽獎一次可能出現(xiàn)的結(jié)果表示出來;

2)假如你參加了該超市開業(yè)當(dāng)天的一次抽獎活動,求能中獎的概率P

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:O是坐標(biāo)原點,Pm,n)(m0)是函數(shù)y=k0)上的點,過點P作直線PAOPP,直線PAx軸的正半軸交于點Aa0)(am).設(shè)OPA的面積為s,且s=1+

1)當(dāng)n=1時,求點A的坐標(biāo);

2)若OP=AP,求k的值;

3)設(shè)n是小于20的整數(shù),且k≠,OP2的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△OAB⊙O的內(nèi)接三角形,∠AOB=120°,過OOE⊥AB于點E,交⊙O于點C,延長OB至點D,使OB=BD,連CD.

(1)求證: CD⊙O切線;

(2)若FOE上一點,BF的延長線交⊙OG,連OG,,CD=6,求SGOB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,EAB上一點,FAD延長線上一點,且DF=BE

1)求證:CE=CF;

2)若點GAD上,且∠GCE=45°,則GE=BE+GD成立嗎?為什么?

查看答案和解析>>

同步練習(xí)冊答案