【題目】如圖,四邊形ABCD,,連接BD

1)如圖1,求證DB平分;

2)如圖2,連接AC,若,求證:

3)如圖3,在(2)的條件下,延長ADBC的延長線于F,點E在邊AB上,,連CEBDG,當時,求BD的長.

【答案】(1)見解析;(2)見解析;(3)7

【解析】

1)過BBEADE,過BBFDCF.根據(jù)四邊形內(nèi)角和為360°得到∠A+DCB=180°.再根據(jù)同角的補角相等得到∠A=FCB.即可證明△AEB≌△CFB,得到BE=BF,根據(jù)到角兩邊距離相等的點在角平分線上即可得到結論;

2)如圖2中,在BD截取DE=AD,連接AE,首先證明△ADE是等邊三角形,只要證明△DAC≌△EABSAS),即可解決問題;

3)如圖3中,作ENDCBDN,在DF上截取DM=DC.想辦法證明△CFM≌△EBNAAS),△DGC≌△NGEAAS),即可解決問題.

1)如圖1.過BBEADE,過BBFDCF

∵∠ABC+ADC=180°,∴∠A+DCB=180°.

∵∠DCB+FCB=180°,∴∠A=FCB

BEAD,BFDC,∴∠AEB=CFB=90°.

在△AEB和△CFB中,∵∠A=FCB,∠AEB=CFB=90°,AB=CB,

∴△AEB≌△CFB,

BE=BF

BEAD,BFDCBE=BF,∴DB平分∠ADC;

2)如圖2中,在BD截取DE=AD,連接AE,

AB=CB,∠BAC=60°,∴△ABC是等邊三角形,∴∠ABC=60°.

∵∠ABC+ADC=180°,∴∠ADC=120°.

由(1)得:DB平分∠ADC,∴∠ADB=CDB=60°.

DE=AD,∴△ADE是等邊三角形,∴AD=DE=AE

∵∠DAE=CAB=60°,∴∠DAC=BAE,

在△DAC與△EAB中,∵

∴△DAC≌△EABSAS),∴DC=BE

BD=BE+DE,∴BD=AD+CD,

BDCD=AD

3)作ENDCBDN,在DF上截取DM=DC

∵∠ADC=120°,∴∠CDM=60°.

DM=DC,∴△DMC是等邊三角形,

CM=CD=DM,∠DMC=60°,∴∠FMC=120°.

CDEN,∴∠CDG=ENG=60°,

∴∠ENB=120°,∴∠CMF=ENB

∵∠F+FBD=ADB=60°,∠FBD+EBN=60°,

∴∠F=EBN

在△CFM和△EBN中,∵∠CMF=ENB,∠F=EBN,CF=BE,

∴△CFM≌△EBNAAS),∴FM=BN,EN=CM=CD

ENCD,∴∠CDG=GNE

∵∠DGC=EGN,∴△DGC≌△NGEAAS),

DG=GN=3,∴2BD=AFFM+DN+BN=8+6=14,∴BD=7

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某商場代銷甲、乙兩種商品,其中甲種商品進價為120/件,售價為130/件,乙種商品進價為100/件,售價為150/件.

1)若商場用36000元購進這兩種商品若干,銷售完后可獲利潤6000元,則該商場購進甲、乙兩種商品各多少件?(列方程組解答)

2)若商場購進這兩種商品共100件,設購進甲種商品x件,兩種商品銷售后可獲總利潤為y元,請寫出yx的函數(shù)關系式(不要求寫出自變量x的范圍),并指出購進甲種商品件數(shù)x逐漸增加時,總利潤y是增加還是減少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在正方形網(wǎng)格上有6個三角形:①△ABC;②△BCD;③△BDE;④△BFG;⑤△FGH;⑥△EFK.其中②⑥中與①相似的是( )

A. ②③④ B. ③④⑤ C. ④⑤⑥ D. ②③⑥

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCDABECDF為直角三角形,∠AEB=CFD=90°,AE=CF=5,BE=DF=12,則EF的長是( 。

A. 7 B. 8 C. 7 D. 7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,E,F(xiàn)是正方形ABCD的對角線AC上的兩點,且AE=CF.

(1)求證:四邊形BEDF是菱形;

(2)若正方形ABCD的邊長為4,AE=,求菱形BEDF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線ABDF,D+B=180°

1)求證:DEBC;

2)如果∠AMD=75°,求∠AGC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,圓⊙O的半徑為1,等腰直角三角形ABC的頂點B的坐標為(2,0),∠CAB=90°,AC=AB,頂點A在⊙O上運動,當直線AB與⊙O相切時,A點的坐標為____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)的圖象如圖所示,給出以下結論:;②;③;④.其中所有正確結論的序號是(

A. ③④ B. ②③ C. ①④ D. ①②③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直線過原點和點,位于第一象限的點在直線上,軸上有一點,,軸于點.

1)求直線的解析式;

2)求線段、的長度;

3)求點的坐標;

4)若點是線段上一點,令長為,的面積為.

①寫出的函數(shù)關系式,并指出自變量的取值范圍;

②當取何值時,為鈍角三角形.

查看答案和解析>>

同步練習冊答案