【題目】如圖,點(diǎn)B、D、E在一條直線上,BE與AC相交于點(diǎn)F,且
⑴求證:△ABC∽△ADE;
⑵求證:∠BAD=∠CAE;
⑶若∠BAD=18°,求∠EBC的度數(shù).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知拋物線C1:與x軸的一個(gè)交點(diǎn)為A(-1,0),另一個(gè)交點(diǎn)為B,與軸的交點(diǎn)為C(0,-3),其頂點(diǎn)為D.
(1)求拋物線C1的解析式;
(2)如圖1,將△OBC沿軸向右平移m個(gè)單位長度(0﹤≤)得到另一個(gè)三角形△EFG,將△EFG與△BCD重疊部分(四邊形BPGQ)的面積記為S,用含m的代數(shù)式表示S;
(3)如圖2,將拋物線C1平移,使其頂點(diǎn)為原點(diǎn)O,得到拋物線C2.若直線與拋物線C2交于S、T兩點(diǎn),點(diǎn)是線段ST上一動(dòng)點(diǎn)(不與S、T重合),試探究拋物線C2上是否存在一點(diǎn)R,點(diǎn)R關(guān)于點(diǎn)N的中心對稱點(diǎn)K也在拋物線C2上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,∠B的角平分線BE與AD交于點(diǎn)E,∠BED的角平分線EF與DC交于點(diǎn)F,若AB=9,DF=2FC,則BC=____.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,BD為△ABC的角平分線,且BD=BC,E為BD延長線上的一點(diǎn),BE=BA,過E作EF⊥AB,F(xiàn)為垂足,下列結(jié)論:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④BA+BC=2BF,其中正確的結(jié)論有________(填序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與軸正半軸相交,其頂點(diǎn)坐標(biāo)為,下列結(jié)論:①;②;③;④方程有兩個(gè)相等的實(shí)數(shù)根,其中正確的結(jié)論是________.(只填序號即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,點(diǎn)從點(diǎn)出發(fā)沿方向以的速度向點(diǎn)勻速運(yùn)動(dòng),同時(shí)點(diǎn)從點(diǎn)出發(fā)沿方向以的速度向點(diǎn)勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn),運(yùn)動(dòng)的時(shí)間是().過點(diǎn)作于點(diǎn),連接,.
(1)四邊形能夠成為菱形嗎?如果能,求出相應(yīng)的值;如果不能,請說明理由;
(2)當(dāng)為何值時(shí),為直角三角形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù).回答下列問題:
(1)求出它的圖像與坐標(biāo)軸的交點(diǎn)坐標(biāo);
(2)當(dāng)自變量滿足什么條件時(shí)?函數(shù)值?
(3)當(dāng)自變量時(shí),則函數(shù)值的范圍?
(4)在所給的直角坐標(biāo)系中,畫出直線的圖像.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com