【題目】如圖,邊長(zhǎng)為1的正方形ABCD的對(duì)角線AC、BD相交于點(diǎn)O.有直角∠MPN,使直角頂點(diǎn)P與點(diǎn)O重合,直角邊PM、PN分別與OA、OB重合,然后逆時(shí)針旋轉(zhuǎn)∠MPN,旋轉(zhuǎn)角為θ(0°<θ<90°),PM、PN分別交AB、BC于E、F兩點(diǎn),連接EF交OB于點(diǎn)G,則下列結(jié)論中正確的是

(1)EF=OE;(2)S四邊形OEBF:S正方形ABCD=1:4;(3)BE+BF=OA;(4)在旋轉(zhuǎn)過(guò)程中,當(dāng)BEF與COF的面積之和最大時(shí),AE=;(5)OGBD=AE2+CF2

【答案】(1),(2),(3),(5).

【解析】

試題分析:(1)∵四邊形ABCD是正方形,

∴OB=OC,∠OBE=∠OCF=45°,∠BOC=90°,

∴∠BOF+∠COF=90°,

∵∠EOF=90°,

∴∠BOF+∠COE=90°,

∴∠BOE=∠COF,

在△BOE和△COF中,

,

∴△BOE≌△COF(ASA),

∴OE=OF,BE=CF,

∴EF=OE;故正確;

(2)∵S四邊形OEBF=S△BOE+S△BOE=S△BOE+S△COF=S△BOC=S正方形ABCD

∴S四邊形OEBF:S正方形ABCD=1:4;故正確;

(3)∴BE+BF=BF+CF=BC=OA;故正確;

(4)過(guò)點(diǎn)O作OH⊥BC,

∵BC=1,

∴OH=BC=,

設(shè)AE=x,則BE=CF=1﹣x,BF=x,

∴S△BEF+S△COF=BEBF+CFOH=x(1﹣x)+(1﹣x)×=﹣(x﹣2+

∵a=﹣<0,

∴當(dāng)x=時(shí),S△BEF+S△COF最大;

即在旋轉(zhuǎn)過(guò)程中,當(dāng)△BEF與△COF的面積之和最大時(shí),AE=;故錯(cuò)誤;

(5)∵∠EOG=∠BOE,∠OEG=∠OBE=45°,

∴△OEG∽△OBE,

∴OE:OB=OG:OE,

∴OGOB=OE2,

∵OB=BD,OE=EF,

∴OGBD=EF2,

∵在△BEF中,EF2=BE2+BF2,

∴EF2=AE2+CF2,

∴OGBD=AE2+CF2.故正確.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)M(﹣2,1)關(guān)于y軸的對(duì)稱(chēng)點(diǎn)N的坐標(biāo)是( 。

A. (2,1) B. (1,﹣2) C. (﹣2,﹣1) D. (2,﹣1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2y-7x=0,則x∶y等于( )

A. 7∶2 B. 4∶7 C. 2∶7 D. 7∶4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若點(diǎn)Pa+4,﹣5b)與點(diǎn)Q2b,2a+8)關(guān)于原點(diǎn)成中心對(duì)稱(chēng),a+b2 =___.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是(

A.等弧所對(duì)的圓心角相等B.優(yōu)弧一定大于劣弧

C.經(jīng)過(guò)三點(diǎn)可以作一個(gè)圓D.相等的圓心角所對(duì)的弧相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在ABCD中,過(guò)點(diǎn)D作DE⊥AB于點(diǎn)E,點(diǎn)F 在邊CD上,DF=BE,連接AF,BF.

(1)求證:四邊形BFDE是矩形;
(2)若CF=3,BF=4,DF=5,求證:AF平分∠DAB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】4m+2n=m+5n,你能根據(jù)等式的性質(zhì)比較mn的大小嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC是等腰三角形,AB=AC.

(1)特殊情形:如圖1,當(dāng)DEBC時(shí),有DB EC.(填“>”,“<”或“=”)

(2)發(fā)現(xiàn)探究:若將圖1中的ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α(0°<α<180°)到圖2位置,則(1)中的結(jié)論還成立嗎?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說(shuō)明理由.

(3)拓展運(yùn)用:如圖3,P是等腰直角三角形ABC內(nèi)一點(diǎn),ACB=90°,且PB=1,PC=2,PA=3,求BPC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,P為邊AB上一點(diǎn)

(1) 如圖1,若ACP=B,求證:AC2=AP·AB

(2) 若M為CP的中點(diǎn),AC=2,

如圖2,若PBM=ACP,AB=3,求BP的長(zhǎng);

如圖3,若ABC=45°,A=BMP=60°,直接寫(xiě)出BP的長(zhǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案