【題目】二次函數(shù)y=x2﹣2x+4化為y=a(x﹣h)2+k的形式,下列正確的是(
A.y=(x﹣1)2+2
B.y=(x﹣2)2+4
C.y=(x﹣2)2+2
D.y=(x﹣1)2+3

【答案】D
【解析】解:y=x2﹣2x+4=(x2﹣2x+1)+3,
=(x﹣1)2+3,
所以,y=(x﹣1)2+3.
故選:D.
利用配方法整理即可得解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【背景知識】數(shù)軸是初中數(shù)學(xué)的一個重要工具,利用數(shù)軸可以將數(shù)與形完美地結(jié) 合.研究數(shù)軸我們發(fā)現(xiàn)了許多重要的規(guī)律:若數(shù)軸上點(diǎn) A、點(diǎn) B 表示的數(shù)分別為 a、b,則A、B 兩點(diǎn)之間的距離 AB= ,線段 AB 的中點(diǎn)表示的數(shù)為 .

【問題情境】如圖,數(shù)軸上點(diǎn)A表示的數(shù)為-2,點(diǎn)B表示的數(shù)為8,點(diǎn)P從點(diǎn) A 出發(fā), 以每秒3個單位長度的速度沿數(shù)軸向右勻速運(yùn)動,同時點(diǎn)Q從點(diǎn)B出發(fā),以每秒 2個單 位長度的速度向左勻速運(yùn)動,設(shè)運(yùn)動時間為t(t>0).

【綜合運(yùn)用】(1) 填空:

①A、B兩點(diǎn)之間的距離AB=__________,線段AB的中點(diǎn)表示的數(shù)為_______

②用含t的代數(shù)式表示:t秒后,點(diǎn)P表示的數(shù)為_______;點(diǎn)Q表示的數(shù)為_____.

(2) 求當(dāng)t為何值時,P、Q 兩點(diǎn)相遇,并寫出相遇點(diǎn)所表示的數(shù);

(3)求當(dāng)t為何值時,PQ=AB;

(4)若點(diǎn)M為PA的中點(diǎn),點(diǎn)N為PB的中點(diǎn),點(diǎn) P在運(yùn)動過程中,線段MN的長度是否發(fā) 生變化?若變化,請說明理由;若不變,請求出線段MN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】不等式組的解集在數(shù)軸上表示為( 。
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若零上8℃記作+8℃,則零下5℃記作____℃.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將等腰直角三角形OAB放在平面直角坐標(biāo)系中,B(4,0),∠AOB=45°,拋物線線過點(diǎn)A,點(diǎn)Px軸上的動點(diǎn),過點(diǎn)P作直線⊥直線OA,以直線為對稱軸,△OAB經(jīng)軸對稱變換后的像是△.設(shè)P(t,0)

(1)當(dāng)點(diǎn) 同時落在拋物線上時,則t的值是_________.

(2)當(dāng)△的三邊與拋物線有交點(diǎn)時,則t的取值范圍是___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,OE,OD分別平分∠AOC和∠BOC.

(1)如果∠AOB=900,BOC=400,求∠DOE的度數(shù);

(2)如果∠AOB=α,BOC=β α、β均為銳角α>β,其他條件不變,求∠DOE;

(3)(1)、(2)的結(jié)果中,你發(fā)現(xiàn)了什么規(guī)律.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀:99×99+199=992+198+1=992+2×99×1+12=(99+1)2=104

計算:(1999×999+1999;

2999999×999999+1999999

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】n為正整數(shù),則計算(-a2n+(-an2的結(jié)果是(  )

A.0B.2anC.-2anD.02a2n

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把點(diǎn)(2,一3)先向右平移3個單位長度,再向下平移2個單位長度得到的點(diǎn)的坐標(biāo)是  。

A.5,-1B.(-1,-5C.5,-5D.(-1,-1

查看答案和解析>>

同步練習(xí)冊答案