作業(yè)寶如圖,要將邊長(zhǎng)為1,3的兩個(gè)連接的正方形紙片,通過適當(dāng)?shù)募羝,得到一個(gè)與之面積相等的正方形.
(Ⅰ)該正方形的邊長(zhǎng)為________(結(jié)果保留根號(hào)).
(Ⅱ)現(xiàn)要求只能用兩條裁剪線,請(qǐng)你設(shè)計(jì)一種裁剪的方法,在圖中畫出裁剪線,并簡(jiǎn)要說明拼接的過程.


分析:(1)根據(jù)正方形的面積求出正方形邊長(zhǎng)即可;
(2)根據(jù)(1)中所求,首先在正方形中裁剪出兩條長(zhǎng)度為的邊長(zhǎng),進(jìn)而通過旋轉(zhuǎn)的到即可.
解答:解:(Ⅰ)∵將邊長(zhǎng)為1,3的兩個(gè)連接的正方形紙片,通過適當(dāng)?shù)募羝,得到一個(gè)與之面積相等的正方形,
∴新的正方形面積為10,
∴該正方形的邊長(zhǎng)為;
(Ⅱ)如圖,過點(diǎn)B作 BC=3,畫出兩條裁剪線AC、CE.
把△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到△APG;
把△CDE繞點(diǎn)E順時(shí)針旋轉(zhuǎn)90°得到△GFE.此時(shí),得到的四邊形ACEG即為所求.
故答案為:
點(diǎn)評(píng):此題主要考查了圖形的剪拼,得出正方形的邊長(zhǎng)后利用旋轉(zhuǎn)得出是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,是從邊長(zhǎng)為40cm、寬為30cm的矩形鋼板的左上角截取一塊長(zhǎng)為20cm、寬為10cm的矩形后,剩下的一塊下腳料.工人師傅要將它作適當(dāng)?shù)厍懈,重新拼接后焊成一個(gè)面積與原下腳料的面積相等,接縫盡可能短的正方形工件.
(1)請(qǐng)根據(jù)上述要求,設(shè)計(jì)出將這塊下腳料適當(dāng)分割成三塊或三塊以上的兩種不同的拼接方案(在圖2和圖3中分別畫出切割時(shí)所沿的虛線,以及拼接后所得到的正方形,保留拼接的痕跡);
(2)比較(1)中的兩種方案,哪種更好一些?說說你的看法和理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•西青區(qū)二模)如圖,要將邊長(zhǎng)為1,3的兩個(gè)連接的正方形紙片,通過適當(dāng)?shù)募羝,得到一個(gè)與之面積相等的正方形.
(Ⅰ)該正方形的邊長(zhǎng)為
10
10
(結(jié)果保留根號(hào)).
(Ⅱ)現(xiàn)要求只能用兩條裁剪線,請(qǐng)你設(shè)計(jì)一種裁剪的方法,在圖中畫出裁剪線,并簡(jiǎn)要說明拼接的過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鹽都區(qū)一模)問題提出
我們?cè)诜治鼋鉀Q某些數(shù)學(xué)問題時(shí),經(jīng)常要比較兩個(gè)數(shù)或代數(shù)式的大小,而解決問題的策略一般要進(jìn)行一定的轉(zhuǎn)化,其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過作差、變形,并利用差的符號(hào)確定他們的大小,即要比較代數(shù)式M、N的大小,只要作出它們的差M-N,若M-N>0,則M>N;若M-N=0,則M=N;若M-N<0,則M<N.
問題解決
如圖1,把邊長(zhǎng)為a+b(a≠b)的大正方形分割成兩個(gè)邊長(zhǎng)分別是a、b的小正方形及兩個(gè)矩形,試比較兩個(gè)小正方形面積之和M與兩個(gè)矩形面積之和N的大。
解:由圖可知:M=a2+b2,N=2ab.
∴M-N=a2+b2-2ab=(a-b)2
∵a≠b,∴(a-b)2>0.
∴M-N>0.
∴M>N.
類比應(yīng)用
(1)已知:多項(xiàng)式M=2a2-a+1,N=a2-2a.試比較M與N的大。
(2)已知:如圖2,銳角△ABC (其中BC為a,AC為b,AB為c)三邊滿足a<b<c,現(xiàn)將△ABC 補(bǔ)成長(zhǎng)方形,使得△ABC的兩個(gè)頂
點(diǎn)為長(zhǎng)方形的兩個(gè)端點(diǎn),第三個(gè)頂點(diǎn)落在長(zhǎng)方形的這一邊的對(duì)邊上.
①這樣的長(zhǎng)方形可以畫
3
3
個(gè);
②所畫的長(zhǎng)方形中哪個(gè)周長(zhǎng)最?為什么?
拓展延伸
已知:如圖3,銳角△ABC(其中BC為a,AC為b,AB為c)三邊滿足a<b<c,畫其BC邊上的內(nèi)接正方形EFGH,使E、F兩點(diǎn)在邊BC上,G、H分別在邊AC、AB上,同樣還可畫AC、AB邊上的內(nèi)接正方形,問哪條邊上的內(nèi)接正方形面積最大?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

“數(shù)學(xué)建!
(1)模型--小馬喝水問題:直線MN表示一條河流的岸,在河流同側(cè)有A、B兩地,小馬從A地出發(fā)到B地,中間要在河邊飲水一次,請(qǐng)?jiān)趫D①中用直尺和圓規(guī)作出使小馬行走最短路程的飲水點(diǎn)P的位置.(作在答題紙上,保留作圖痕跡,并用黑水筆將痕跡描深)
(2)運(yùn)用--和最小問題:如圖②,E是邊長(zhǎng)為8的正方形ABCD邊BC上一點(diǎn),CE=2,P是對(duì)角線BD上的一個(gè)動(dòng)點(diǎn),求PC+PE的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案