【題目】如圖1,等邊邊長為6,是的中線,為線段(不包括端點(diǎn)、上一動點(diǎn),以為一邊且在左下方作如圖所示的等邊,連結(jié).
(1)點(diǎn)在運(yùn)動過程中,線段與始終相等嗎?說說你的理由;
(2)若延長至,使得,如圖2,問:
①求出此時(shí)的長;
②當(dāng)點(diǎn)在線段的延長線上時(shí),判斷的長是否為定值,若是請直接寫出的長;若不是請簡單說明理由.
【答案】(1),理由見解析;(2)①;②定值,8.
【解析】
(1)先證明,然后依據(jù)證明,由全等三角形的性質(zhì)可得到;
(2)過點(diǎn)作,垂足為,先依據(jù)等腰三角形三線合一的性質(zhì)求得,然后由可求得,依據(jù)含直角三角形的性質(zhì)可求得的長,從而可求得的長,然后在中依據(jù)勾股定理可求得的長,故此可求得的長,最后根據(jù)求解即可;
(3)首先根據(jù)題意畫出圖形,過點(diǎn)作,垂足為.先證,從而得到,由含直角三角形的性質(zhì)可求得的長,依據(jù)勾股定理可求得的長,然后由等腰三角形三線合一的性質(zhì)可得到,故此可求得的長.
(1).
理由如下:
和均為等邊三角形,
,,.
,
.
在和中,,
.
;
(2)如圖2所示:過點(diǎn)作,垂足為.
,是的中線,
.
由(1)可知:,
,.
在中,,
,.
在中,,,
,
.
;
(3)如圖3所示:過點(diǎn)作,垂足為.
和均為等邊三角形,
,,.
,即,
在和中,,
,
.
在中,,
.
,,
.
.
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于多項(xiàng)式Ax2bxc(b、c為常數(shù)),作如下探究:
(1)不論x取何值,A都是非負(fù)數(shù),求b與c滿足的條件;
(2)若A是完全平方式,
①當(dāng)c=9時(shí),b= ;當(dāng)b=3時(shí),c= ;
②若多項(xiàng)式Bx2dxc與A有公因式,求d的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(diǎn)(-1,2)且與x軸交點(diǎn)的橫坐標(biāo)分別為x1,x2,其中-2<x1<-1,0<x2<1,下列結(jié)論:①b<0;②a+b+c<0;③4a-2b+c<0;④2a-b<0,其中正確的有______.(填代號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC和△DEF中,已有條件AB=DE,還需要添加兩個(gè)條件才能使△ABC≌△DEF.不能添加的一組條件是( )
A. ∠B=∠E,BC=EF B. ∠A=∠D,BC=EF
C. ∠A=∠D,∠B=∠E D. BC=EF,AC=DF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】Rt△ABC中,AB=AC=2,∠A=90°,D為BC中點(diǎn),點(diǎn)E,F分別在AB,AC上,且BE=AF,
(1)求證:ED=FD,
(2)求證:DF⊥DE,
(3)求四邊形AFDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,A(m,0)為 x 軸負(fù)半軸上的點(diǎn),B(0,n)為 y 軸負(fù)半軸上的點(diǎn).
(1)如圖,以 A 點(diǎn)為頂點(diǎn),AB 為腰在第三象限作等腰 Rt△ABC.若已知 m= 2,n= 4,試求 C 點(diǎn)的坐標(biāo);
(2)若∠ACB=90°,點(diǎn) C 的坐標(biāo)為(4, 4),請?jiān)谧鴺?biāo)系中畫出圖形并求 n﹣m 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,函數(shù)y=(k>0,x>0)的圖象與直線y=2x﹣2交于點(diǎn)Q(2,m).
(1)求m,k的值;
(2)已知點(diǎn)P(a,0)(a>0)是x軸上一動點(diǎn),過點(diǎn)P作平行于y軸的直線,交直線y=2x﹣2于點(diǎn)M,交函數(shù)y=的圖象于點(diǎn)N.
①當(dāng)a=4時(shí),求MN的長;
②若PM>PN,結(jié)合圖象,直接寫出a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在筆直的公路旁有一座山,為方便運(yùn)輸貨物現(xiàn)要從公路上的處開鑿隧道修通一條公路到處,已知點(diǎn)與公路上的?空的距離為,與公路上另-?空的距離為,?空之間的距離為,且
求修建的公路的長;
若公路修通后,輛貨車從處經(jīng)過點(diǎn)到處的路程是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的部分圖象如圖所示,圖象過點(diǎn),對稱軸為直線,下列結(jié)論: ; ; ; 若點(diǎn)、點(diǎn)、點(diǎn)在該函數(shù)圖象上,則; 若方程的兩根為和,且,則其中正確的結(jié)論是______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com