【題目】為緩解“停車難”問題,某單位擬建造地下停車庫,建筑設計師提供了該地下停車庫的設計示意圖。按規(guī)定,地下停車庫坡道口上方要張貼限高標志,以便告知停車人車輛能否安全駛入。(其中AB=9m,BC=0.5m)為標明限高,請你根據(jù)該圖計算CE。(精確到0.1m)(參考數(shù)值,,)
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分別為E,F(xiàn).
(1)求證:△ABE≌△CDF;
(2)若AC與BD交于點O,求證:AO=CO.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,BC∥OA,BC=3,OA=6,AB=3
(1)直接寫出點B的坐標
(2)已知D.E分別為線段OC.OB上的點,OD=5,OE=2BE,直線DE交x軸于點F,求直線DE的解析式
(3)在(2)的條件下,點M是直線DE上的一點,在x軸上方是否存在另一個點N,使以O.D.M.N為頂點的四邊形是菱形?若存在,請直接寫出點N的坐標;若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)計算:
(2)如圖,延長線段AB至C使BC=2AB,延長線段BA至D使AD=3AB,點E是線段DB的中點,點F是線段AC的中點,若AB=6cm,求EF的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校要求200名學生進行社會調查,每人必須完成3~6份報告,調查結束后隨機抽查了20名學生每人完成報告的份數(shù),并分為四類,A:3份;B:4份;C:5份;D:6份.將各類的人數(shù)繪制成扇形圖(如圖1)和尚未完整的條形圖(如圖2),回答下列問題:
(1)請將條形統(tǒng)計圖2補充完整;
(2)寫出這20名學生每天完成報告份數(shù)的眾數(shù)_____份和中位數(shù)_____份;
(3)在求出20名學生每人完成報告份數(shù)的平均數(shù)時,小明是這樣分析的:
第一步:求平均數(shù)的公式是 =;
第二步:在該問題中,n=4,x1=3,x2=4,x3=5,x4=6;
第三步:==4.5(份).
小明的分析對不對?如果對,請說明理由,如果不對,請求出正確結果;
(4)現(xiàn)從“D類”的學生中隨機選出2人進行采訪,若“D類”的學生中只有1名男生,則所選兩位同學中有男同學的概率是多少?請用列表法或樹狀圖的方法求解.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】矩形ABCD中,點C(3,8),E、F為AB、CD邊上的中點,如圖1,點A在原點處,點B在y軸正半軸上,點C在第一象限,若點A從原點出發(fā),沿x軸向右以每秒1個單位長度的速度運動,點B隨之沿y軸下滑,并帶動矩形ABCD在平面內滑動,如圖2,設運動時間表示為t秒,當點B到達原點時停止運動.
(1)當t=0時,點F的坐標為 ;
(2)當t=4時,求OE的長及點B下滑的距離;
(3)求運動過程中,點F到點O的最大距離;
(4)當以點F為圓心,FA為半徑的圓與坐標軸相切時,求t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,OM是∠AOC的平分線,ON是∠BOC的平分線.
(1)如圖1,當∠AOB=90°,∠BOC=60°時,∠MON的度數(shù)是多少?為什么?
(2)如圖2,當∠AOB=70°,∠BOC=60°時,∠MON= 度.(直接寫出結果)
(3)如圖3,當∠AOB=α,∠BOC=β時,猜想:∠MON的度數(shù)是多少?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在每個小正方形邊長為1的方格紙中,每個小方格的頂點叫做格點.
(1)畫出△ABC中AB邊上的中線CD;
(2)畫出△ABC向右平移3個單位長度后得到的△A1B1C1;
(3)圖中AC與A1C1的關系是 ;
(4)在圖中,能使S△ABQ=S△ABC的格點Q共有 個,分別用Q1、Q2、…表示出來.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com