下列四個(gè)多邊形:①等邊三角形;②正方形;③正五邊形;④正六邊形.其中,既是軸對(duì)稱圖形又是中心對(duì)稱圖形的是( ▲ )
A.①②B.②③C.②④D.①④
C
由正多邊形的對(duì)稱性知,偶數(shù)邊的正多邊形既是軸對(duì)稱圖形,又是中心對(duì)稱圖形;奇數(shù)邊的正多邊形只是軸對(duì)稱圖形,不是中心對(duì)稱圖形.故選C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在圖形的全等變換中,有旋轉(zhuǎn)變換,翻折(軸對(duì)稱)變換和平移變換.一次數(shù)學(xué)活動(dòng)課上,老師組織大家利用矩形進(jìn)行圖形變換的探究活動(dòng).

(1)第一小組的同學(xué)發(fā)現(xiàn),在如圖1-1的矩形ABCD中,AC、BD相交于點(diǎn)O,Rt△ADC可以由Rt△ABC經(jīng)過(guò)一種變換得到,請(qǐng)你寫(xiě)出這種變換的過(guò)程 ▲ 
(2)第二小組同學(xué)將矩形紙片ABCD按如下順序進(jìn)行操作:對(duì)折、展平,得折痕EF(如圖2-1);再沿GC折疊,使點(diǎn)B落在EF上的點(diǎn)B'處(如圖2-2),這樣能得到∠B'GC的大小,你知道∠B'GC的大小是多少嗎?請(qǐng)寫(xiě)出求解過(guò)程.

(3)第三小組的同學(xué),在一個(gè)矩形紙片上按照?qǐng)D3-1的方式剪下△ABC,其中BABC,將△ABC沿著直線AC的方向依次進(jìn)行平移變換,每次均移動(dòng)AC的長(zhǎng)度,得到了△CDE、△EFG和△GHI,如圖3-2.已知AH=AI,判斷以AD、AFAH為三邊能否構(gòu)成三角形?若能構(gòu)成,請(qǐng)判斷這個(gè)三角形的形狀,若不能構(gòu)成,請(qǐng)說(shuō)明理由.

(4)探究活動(dòng)結(jié)束后,老師給大家留下了一道探究題:如圖4-1,已知AA'BB'CC'=4,∠AOB'=∠BOC'=∠COA'=60°,請(qǐng)利用圖形變換探究SAOB'+SBOC'+SCOA'的大小關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

中,,M是AC的中點(diǎn),P是線段BM上的動(dòng)點(diǎn),
將線段PA繞點(diǎn)P順時(shí)針旋轉(zhuǎn)得到線段PQ。
(1) 若且點(diǎn)P與點(diǎn)M重合(如圖1),線段CQ的延長(zhǎng)線交射線BM于點(diǎn)D,請(qǐng)補(bǔ)全圖形,
并寫(xiě)出∠CDB的度數(shù);

(2) 在圖2中,點(diǎn)P不與點(diǎn)B,M重合,線段CQ的延長(zhǎng)線與射線BM交于點(diǎn)D,猜想∠CDB的大
。ㄓ煤的代數(shù)式表示),并加以證明;
(3) 對(duì)于適當(dāng)大小的,當(dāng)點(diǎn)P在線段BM上運(yùn)動(dòng)到某一位置(不與點(diǎn)B,M重合)時(shí),能使得
線段CQ的延長(zhǎng)線與射線BM交于點(diǎn)D,且PQ=QD,請(qǐng)直接寫(xiě)出的范圍。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,長(zhǎng)方形紙片ABCD中,AB=8cm,AD=6cm,按下列步驟進(jìn)行裁剪和拼圖:

第一步:如圖①,在線段AD上任意取一點(diǎn)E,沿EB,EC剪下一個(gè)三角形紙片EBC(余下部分不再使用);
第二步:如圖②,沿三角形EBC的中位線GH將紙片剪成兩部分,并在線段GH上任意取一點(diǎn)M,線段BC上任意取一點(diǎn)N,沿MN將梯形紙片GBCH剪成兩部分;
第三步:如圖③,將MN左側(cè)紙片繞G點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)180°,使線段GB與GE重合,將MN右側(cè)紙片繞H點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)180°,使線段HC與HE重合,拼成一個(gè)與三角形紙片EBC面積相等的四邊形紙片.
(注:裁剪和拼圖過(guò)程均無(wú)縫且不重疊)
則拼成的這個(gè)四邊形紙片的周長(zhǎng)的最小值為_(kāi)_______cm,最大值為_(kāi)_______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在Rt△ABC中,∠ABC=90°,∠ACB=30°,將△ABC繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)15°后得到△AB1C1,B1C1交AC于點(diǎn)D,如果AD=,則△ABC的周長(zhǎng)等于         .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,△ABC中∠A=30°,E是AC邊上的點(diǎn),先將△ABE沿著B(niǎo)E翻折,翻折后△ABE的AB邊交AC于點(diǎn)D,又將△BCD沿著B(niǎo)D翻折,C點(diǎn)恰好落在BE上,此時(shí)∠CDB=82°,則原三角形的∠B =_______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,有一直角△ABC,且A(0,5),B(-5,2),C(0,2),并已知△AA1C1是由△ABC經(jīng)過(guò)旋轉(zhuǎn)變換得到的.

(1)問(wèn)由△ABC旋轉(zhuǎn)得到的△AA1C1的旋轉(zhuǎn)角的度數(shù)是多少?并寫(xiě)出旋轉(zhuǎn)中心的坐標(biāo);
(2)請(qǐng)你畫(huà)出仍以(1)中的旋轉(zhuǎn)中心為旋轉(zhuǎn)中心,將△AA1C1、△ABC分別按順時(shí)針、逆時(shí)針各旋轉(zhuǎn)90°的兩個(gè)三角形,并寫(xiě)出變換后與A1相對(duì)應(yīng)點(diǎn)A2的坐標(biāo);
(3)利用變換前后所形成圖案證明勾股定理(設(shè)△ABC兩直角邊為、,斜邊為).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

將一個(gè)斜邊長(zhǎng)為的一個(gè)等腰直角三角形紙片(如圖1),沿它的對(duì)稱軸折疊1次后得到另一個(gè)等腰直角三角形(如圖2),再將圖2的等腰直角三角形沿它的對(duì)稱軸折疊后得到又一個(gè)等腰直角三角形(如圖3),若連續(xù)將圖1的等腰直角三角形折疊次后所得到的等腰直角三角形(如圖n+1)的斜邊長(zhǎng)為( * ).
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖是一塊長(zhǎng)方形的場(chǎng)地,長(zhǎng),寬,從、兩處入口的中路寬都為,兩小路匯合處路寬為,其余部分種植草坪,則草坪面積為(    )
A.5050m²B.5000m² C.4900m² D.4998m²

查看答案和解析>>

同步練習(xí)冊(cè)答案