【題目】直線ykxb與拋物線yx2交于A(x1,y1),B(x2,y2)兩點(diǎn),當(dāng)OAOB時(shí),直線AB恒過(guò)一個(gè)定點(diǎn),該定點(diǎn)坐標(biāo)為___________

【答案】(0,4)

【解析】

根據(jù)直線y=kx+b與拋物線y=x2交于A(x1,y1)、B(x2,y2)兩點(diǎn),可以聯(lián)立在一起,得到關(guān)于x的一元二次方程,從而可以得到兩根之和與兩根之積,再根據(jù)OA⊥OB,可以求得b的值,從而可以得到直線AB恒過(guò)的定點(diǎn)的坐標(biāo).

∵直線ykxb與拋物線yx2交于Ax1,y1),Bx2y2兩點(diǎn),

kxbx2,化簡(jiǎn),得x2-4kx-4b=0,

x1x2=4kx1x2=-4b.

又∵OAOB,

,

解得b=4,即直線ykx+4,

故直線恒過(guò)定點(diǎn)(0,4).

故答案是:(0,4).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】等腰△ABC,BC=8,AB、AC的長(zhǎng)是關(guān)于x的方程x210x+m=0的兩根,則m=__

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC的周長(zhǎng)是20,OB和OC分別平分∠ABC和∠ACB,OD⊥BC于點(diǎn)D,且OD=3,則△ABC的面積是( 。

A. 20 B. 25 C. 30 D. 35

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠BAC=120°,AB=AC=4,ADBC,BD=2,延長(zhǎng)ADE,使AE=2AD,連接BE

1)求證:ABE為等邊三角形;

2)將一塊含60°角的直角三角板PMN如圖放置,其中點(diǎn)P與點(diǎn)E重合,且∠NEM=60°,邊NEAB交于點(diǎn)G,邊MEAC交于點(diǎn)F.求證:BG=AF;

3)在(2)的條件下,求四邊形AGEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)為常數(shù)),當(dāng)自變量的值滿足時(shí),與其對(duì)應(yīng)的函數(shù)值的最小值為4,則的值為(

A.1-5B.-53C.-31D.-35

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y=ax2-2ax+cx軸交于A,B兩點(diǎn),與y軸正半軸交于點(diǎn)C,且A(-1,0).

(1)一元二次方程ax2-2ax+c=0的解是 ;

(2)一元二次不等式ax2-2ax+c>0的解集是 ;

(3)若拋物線的頂點(diǎn)在直線y=2x上,求此拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)的圖象過(guò)點(diǎn)A3,0),對(duì)稱(chēng)軸為直線,給出以下結(jié)論:

;②;③;④若M-3)、N6,)為函數(shù)圖象上的兩點(diǎn),則,其中正確的是____________.(只要填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)期末,某班評(píng)選一名優(yōu)秀學(xué)生干部,下表是班長(zhǎng)、學(xué)習(xí)委員和團(tuán)支部書(shū)記的得分情況:

假設(shè)在評(píng)選優(yōu)秀干部時(shí),思想表現(xiàn)、學(xué)習(xí)成績(jī)、工作能力這三方面的重要比為3 3 4 ,通過(guò)計(jì)算說(shuō)明誰(shuí)應(yīng)當(dāng)選為優(yōu)秀學(xué)生干部。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)直尺和三角尺的實(shí)物擺放圖,解決下列問(wèn)題.

1)如圖1,是我們學(xué)過(guò)的用直尺和三角尺畫(huà)平行線的方法的示意圖,畫(huà)圖的原理是__________

2)如圖2,圖中互余的角有________________,若要使直尺的邊緣DE與三角尺的AB邊平行,則應(yīng)滿足_________(填角相等);

3)如圖3,若BCGH,試判斷ACFG的位置關(guān)系,并證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案