【題目】邊長(zhǎng)為a的等邊三角形,記為第1個(gè)等邊三角形,取其各邊的三等分點(diǎn),順次連接得到一個(gè)正六邊形,記為第1個(gè)正六邊形,取這個(gè)正六邊形不相鄰的三邊中點(diǎn),順次連接又得到一個(gè)等邊三角形,記為第2個(gè)等邊三角形,取其各邊的三等分點(diǎn),順次連接又得到一個(gè)正六邊形,記為第2個(gè)正六邊形(如圖),…,按此方式依次操作,則第6個(gè)正六邊形的邊長(zhǎng)為( )
A.
B.
C.
D.
【答案】A
【解析】解:連接AD、DF、DB. ∵六邊形ABCDEF是正六邊形,
∴∠ABC=∠BAF=∠AFE,AB=AF,∠E=∠C=120°,EF=DE=BC=CD,
∴∠EFD=∠EDF=∠CBD=∠BDC=30°,
∵∠AFE=∠ABC=120°,
∴∠AFD=∠ABD=90°,
在Rt△ABD和RtAFD中
∴Rt△ABD≌Rt△AFD(HL),
∴∠BAD=∠FAD= ×120°=60°,
∴∠FAD+∠AFE=60°+120°=180°,
∴AD∥EF,
∵G、I分別為AF、DE中點(diǎn),
∴GI∥EF∥AD,
∴∠FGI=∠FAD=60°,
∵六邊形ABCDEF是正六邊形,△QKM是等邊三角形,
∴∠EDM=60°=∠M,
∴ED=EM,
同理AF=QF,
即AF=QF=EF=EM,
∵等邊三角形QKM的邊長(zhǎng)是a,
∴第一個(gè)正六邊形ABCDEF的邊長(zhǎng)是 a,即等邊三角形QKM的邊長(zhǎng)的 ,
過(guò)F作FZ⊥GI于Z,過(guò)E作EN⊥GI于N,
則FZ∥EN,
∵EF∥GI,
∴四邊形FZNE是平行四邊形,
∴EF=ZN= a,
∵GF= AF= × a= a,∠FGI=60°(已證),
∴∠GFZ=30°,
∴GZ= GF= a,
同理IN= a,
∴GI= a+ a+ a= a,即第二個(gè)等邊三角形的邊長(zhǎng)是 a,與上面求出的第一個(gè)正六邊形的邊長(zhǎng)的方法類(lèi)似,可求出第二個(gè)正六邊形的邊長(zhǎng)是 × a;
同理第第三個(gè)等邊三角形的邊長(zhǎng)是 × a,與上面求出的第一個(gè)正六邊形的邊長(zhǎng)的方法類(lèi)似,可求出第三個(gè)正六邊形的邊長(zhǎng)是 × × a;
同理第四個(gè)等邊三角形的邊長(zhǎng)是 × × a,第四個(gè)正六邊形的邊長(zhǎng)是 × × × a;
第五個(gè)等邊三角形的邊長(zhǎng)是 × × × a,第五個(gè)正六邊形的邊長(zhǎng)是 × × × × a;
第六個(gè)等邊三角形的邊長(zhǎng)是 × × × × a,第六個(gè)正六邊形的邊長(zhǎng)是 × × × × × a,
即第六個(gè)正六邊形的邊長(zhǎng)是 × a,
故選:A.
連接AD、DB、DF,求出∠AFD=∠ABD=90°,根據(jù)HL證兩三角形全等得出∠FAD=60°,求出AD∥EF∥GI,過(guò)F作FZ⊥GI,過(guò)E作EN⊥GI于N,得出平行四邊形FZNE得出EF=ZN= a,求出GI的長(zhǎng),求出第一個(gè)正六邊形的邊長(zhǎng)是 a,是等邊三角形QKM的邊長(zhǎng)的 ;同理第二個(gè)正六邊形的邊長(zhǎng)是等邊三角形GHI的邊長(zhǎng)的 ;求出第五個(gè)等邊三角形的邊長(zhǎng),乘以 即可得出第六個(gè)正六邊形的邊長(zhǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn),使點(diǎn)B落在AB邊上點(diǎn)B′處,此時(shí),點(diǎn)A的對(duì)應(yīng)點(diǎn)A′恰好落在BC邊的延長(zhǎng)線上,下列結(jié)論錯(cuò)誤的( )
A.∠BCB′=∠ACA′
B.∠ACB=2∠B
C.∠B′CA=∠B′AC
D.B′C平分∠BB′A′
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖正方形ABCD的邊長(zhǎng)為2,點(diǎn)E、F、G、H分別在AD、AB、BC、CD上的點(diǎn),且AE=BF=CG=DH,分別將△AEF、△BFG、△CGH、△DHE沿EF、FG、GH、HE翻折,得四邊形MNKP,設(shè)AE=x,S四邊形MNKP=y,則y關(guān)于x的函數(shù)圖象大致為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,BC=5,在CD上任取一點(diǎn)E,連接BE,將△BCE沿BE折疊,使點(diǎn)C恰好落在AD邊上的點(diǎn)F處,則CE的長(zhǎng)為( )
A.2
B.
C.1
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了弘揚(yáng)優(yōu)秀傳統(tǒng)文化,某中學(xué)舉辦了文化知識(shí)大賽,其規(guī)則是:每位參賽選手回答100道選擇題,答對(duì)一題得1分,不答或錯(cuò)答不扣分,賽后對(duì)全體參賽選手的答題情況進(jìn)行了相關(guān)統(tǒng)計(jì),整理并繪制成如下圖表:
組別 | 分?jǐn)?shù)段 | 頻數(shù)(人) | 頻率 |
1 | 50≤x<60 | 30 | 0.1 |
2 | 60≤x<70 | 45 | 0.15 |
3 | 70≤x<80 | 60 | n |
4 | 80≤x<90 | m | 0.4 |
5 | 90≤x<100 | 45 | 0.15 |
請(qǐng)根據(jù)以圖表信息,解答下列問(wèn)題:
(1)表中m= , n=;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)在得分前5名的同學(xué)中,有3位男同學(xué)(A,B,C)和2位女同學(xué)(D,E),現(xiàn)準(zhǔn)備從中選取兩名同學(xué)參加區(qū)級(jí)的比賽,用樹(shù)狀圖或列表法求選出的兩名同學(xué)恰好是一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某市初三學(xué)生的體育測(cè)試成績(jī)和課外體育鍛煉時(shí)間的情況,現(xiàn)從全市初三學(xué)生體育測(cè)試成績(jī)中隨機(jī)抽取200名學(xué)生的體育測(cè)試成績(jī)作為樣本.體育成績(jī)分為四個(gè)等次:優(yōu)秀、良好、及格、不及格.
體育鍛煉時(shí)間 | 人數(shù) |
4≤x≤6 |
|
2≤x<4 | 43 |
0≤x<2 | 15 |
(1)試求樣本扇形圖中體育成績(jī)“良好”所對(duì)扇形圓心角的度數(shù);
(2)統(tǒng)計(jì)樣本中體育成績(jī)“優(yōu)秀”和“良好”學(xué)生課外體育鍛煉時(shí)間表(如圖表所示),請(qǐng)將圖表填寫(xiě)完整(記學(xué)生課外體育鍛煉時(shí)間為x小時(shí));
(3)全市初三學(xué)生中有14400人的體育測(cè)試成績(jī)?yōu)椤皟?yōu)秀”和“良好”,請(qǐng)估計(jì)這些學(xué)生中課外體育鍛煉時(shí)間不少于4小時(shí)的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】李老師為了了解所教班級(jí)學(xué)生完成數(shù)學(xué)課前預(yù)習(xí)的具體情況,對(duì)本班部分學(xué)生進(jìn)行了為期半個(gè)月的跟蹤調(diào)查,他將調(diào)查結(jié)果分為四類(lèi),A:很好;B:較好;C:一般;D:較差.并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問(wèn)題:
(1)李老師一共調(diào)查了多少名同學(xué)?
(2)C類(lèi)女生有3名,D類(lèi)男生有1名,將圖1條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)為了共同進(jìn)步,李老師想從被調(diào)查的A類(lèi)和D類(lèi)學(xué)生中各隨機(jī)選取一位同學(xué)進(jìn)行“一幫一”互助學(xué)習(xí),請(qǐng)用列表法或畫(huà)樹(shù)形圖的方法求出所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等腰Rt△ABC中,∠C=90°,AC=8,F(xiàn)是AB邊上的中點(diǎn),點(diǎn)D、E分別在AC、BC邊上運(yùn)動(dòng),且保持AD=CE.連接DE、DF、EF.在此運(yùn)動(dòng)變化的過(guò)程中,下列結(jié)論:
①△DFE是等腰直角三角形;
②四邊形CDFE不可能為正方形;
③四邊形CDFE的面積保持不變;
④△CDE面積的最大值為8.
其中正確的結(jié)論有( )個(gè).
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知一次函數(shù)y=x﹣3與反比例函數(shù)y=的圖象相交于點(diǎn)A(4,n),與x軸相交于點(diǎn)B.
(1)填空:n的值為_(kāi)__ , k的值為_(kāi)___;
(2)以AB為邊作菱形ABCD,使點(diǎn)C在x軸正半軸上,點(diǎn)D在第一象限,求點(diǎn)D的坐標(biāo);
(3)觀察反比函數(shù)y=的圖象,當(dāng)y≥﹣2時(shí),請(qǐng)直接寫(xiě)出自變量x的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com