【題目】如圖,在矩形ABCD中,AB=4,BC=3,點(diǎn)O為對(duì)角線BD的中點(diǎn),點(diǎn)P從點(diǎn)A出發(fā),沿折線AD﹣DO﹣OC以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)C運(yùn)動(dòng),當(dāng)點(diǎn)P與點(diǎn)A不重合時(shí),過點(diǎn)P作PQ⊥AB于點(diǎn)Q,以PQ為邊向右作正方形PQMN,設(shè)正方形PQMN與△ABD重疊部分圖形的面積為S(平方單位),點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(秒).
(1)求點(diǎn)N落在BD上時(shí)t的值;
(2)直接寫出點(diǎn)O在正方形PQMN內(nèi)部時(shí)t的取值范圍;
(3)當(dāng)點(diǎn)P在折線AD﹣DO上運(yùn)動(dòng)時(shí),求S與t之間的函數(shù)關(guān)系式;
(4)直接寫出直線DN平分△BCD面積時(shí)t的值.
【答案】
(1)解:當(dāng)點(diǎn)N落在BD上時(shí),如圖1.
∵四邊形PQMN是正方形,
∴PN∥QM,PN=PQ=t.
∴△DPN∽△DQB.
∴ .
∵PN=PQ=PA=t,DP=3﹣t,QB=AB=4,
∴ .
∴t= .
∴當(dāng)t= 時(shí),點(diǎn)N落在BD上
(2)解:①如圖2,
則有QM=QP=t,MB=4﹣t.
∵四邊形PQMN是正方形,
∴MN∥DQ.
∵點(diǎn)O是DB的中點(diǎn),
∴QM=BM.
∴t=4﹣t.
∴t=2.
②如圖3,
∵四邊形ABCD是矩形,
∴∠A=90°.
∵AB=4,AD=3,
∴DB=5.
∵點(diǎn)O是DB的中點(diǎn),
∴DO= .
∴1×t=AD+DO=3+ .
∴t= .
∴當(dāng)點(diǎn)O在正方形PQMN內(nèi)部時(shí),t的范圍是2<t<
(3)解:①當(dāng)0<t≤ 時(shí),如圖4.
S=S正方形PQMN=PQ2=PA2=t2.
②當(dāng) <t≤3時(shí),如圖5,
∵tan∠ADB= = ,
∴ = .
∴PG=4﹣ t.
∴GN=PN﹣PG=t﹣(4﹣ t)= ﹣4.
∵tan∠NFG=tan∠ADB= ,
∴ .
∴NF= GN= ( ﹣4)= t﹣3.
∴S=S正方形PQMN﹣S△GNF
=t2﹣ ×( ﹣4)×( t﹣3)
=﹣ t2+7t﹣6.
③當(dāng)3<t≤ 時(shí),如圖6,
∵四邊形PQMN是正方形,四邊形ABCD是矩形.
∴∠PQM=∠DAB=90°.
∴PQ∥AD.
∴△BQP∽△BAD.
∴ .
∵BP=8﹣t,BD=5,BA=4,AD=3,
∴ .
∴BQ= ,PQ= .
∴QM=PQ= .
∴BM=BQ﹣QM= .
∵tan∠ABD= ,
∴FM= BM= .
∴S=S梯形PQMF= (PQ+FM)QM
= [ + ]
= (8﹣t)2
= t2﹣ t+ .
綜上所述:當(dāng)0<t≤ 時(shí),S=t2.
當(dāng) <t≤3時(shí),S=﹣ t2+7t﹣6.
當(dāng)3<t≤ 時(shí),S= t2﹣ t+
(4)解:設(shè)直線DN與BC交于點(diǎn)E,
∵直線DN平分△BCD面積,
∴BE=CE= .
①點(diǎn)P在AD上,過點(diǎn)E作EH∥PN交AD于點(diǎn)H,如圖7,
則有△DPN∽△DHE.
∴ .
∵PN=PA=t,DP=3﹣t,DH=CE= ,EH=AB=4,
∴ .
解得;t= .
②點(diǎn)P在DO上,連接OE,如圖8,
則有OE=2,OE∥DC∥AB∥PN.
∴△DPN∽△DOE.
∴ .
∵DP=t﹣3,DO= ,OE=2,
∴PN= (t﹣3).
∵PQ= (8﹣t),PN=PQ,
∴ (t﹣3)= (8﹣t).
解得:t= .
③點(diǎn)P在OC上,設(shè)DE與OC交于點(diǎn)S,連接OE,交PQ于點(diǎn)R,如圖9,
則有OE=2,OE∥DC.
∴△DSC∽△ESO.
∴ .
∴SC=2SO.
∵OC= ,
∴SO= = .
∵PN∥AB∥DC∥OE,
∴△SPN∽△SOE.
∴ .
∵SP=3+ + ﹣t= ,SO= ,OE=2,
∴PN= .
∵PR∥MN∥BC,
∴△ORP∽△OEC.
∴ .
∵OP=t﹣ ,OC= ,EC= ,
∴PR= .
∵QR=BE= ,
∴PQ=PR+QR= .
∵PN=PQ,
∴ = .
解得:t= .
綜上所述:當(dāng)直線DN平分△BCD面積時(shí),t的值為 、 、 .
【解析】(1)可證△DPN∽△DQB,從而有 ,即可求出t的值.(2)只需考慮兩個(gè)臨界位置(①M(fèi)N經(jīng)過點(diǎn)O,②點(diǎn)P與點(diǎn)O重合)下t的值,就可得到點(diǎn)O在正方形PQMN內(nèi)部時(shí)t的取值范圍.(3)根據(jù)正方形PQMN與△ABD重疊部分圖形形狀不同分成三類,如圖4、圖5、圖6,然后運(yùn)用三角形相似、銳角三角函數(shù)等知識(shí)就可求出S與t之間的函數(shù)關(guān)系式.(4)由于點(diǎn)P在折線AD﹣DO﹣OC運(yùn)動(dòng),可分點(diǎn)P在AD上,點(diǎn)P在DO上,點(diǎn)P在OC上三種情況進(jìn)行討論,然后運(yùn)用三角形相似等知識(shí)就可求出直線DN平分△BCD面積時(shí)t的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某運(yùn)算程序,該程序是循環(huán)迭代的一種.根據(jù)該程序的指令,如果輸入的值是10,那么得到第1次輸出的值是5;把第1次輸出的值再次輸入,那么第2次輸出的值是6;把第2次輸出的值再次輸入,那么第3次輸出的值是3;…,第2018次輸出的值是( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形ABCD中,E是CD上一點(diǎn),DE:EC=1:3,連AE,BE,BD且AE,BD交于F,則S△DEF:S△EBF:S△ABF= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形紙片ABCD中,AB=3cm,AD=5cm,折疊紙片使B點(diǎn)落在邊AD上的E處,折痕為PQ,過點(diǎn)E作EF∥AB交PQ于F,連接BF.
(1)求證:四邊形BFEP為菱形;
(2)當(dāng)點(diǎn)E在AD邊上移動(dòng)時(shí),折痕的端點(diǎn)P、Q也隨之移動(dòng);
①當(dāng)點(diǎn)Q與點(diǎn)C重合時(shí)(如圖2),求菱形BFEP的邊長(zhǎng);
②若限定P、Q分別在邊BA、BC上移動(dòng),求出點(diǎn)E在邊AD上移動(dòng)的最大距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù) 的圖象交于二四象限內(nèi)的A、B 兩點(diǎn),與x軸交于C點(diǎn),點(diǎn)B的坐標(biāo)為(6,n),線段OA=5,E為x軸負(fù)半軸上一點(diǎn),且sin∠AOE= .
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)求△AOC的面積;
(3)直接寫出一次函數(shù)值大于反比例函數(shù)值時(shí)自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以下四個(gè)命題中真命題是( )
①三角形有且只有一個(gè)內(nèi)切圓;
②四邊形的內(nèi)角和與外角和相等;
③順次連接四邊形各邊中點(diǎn)所得的四邊形一定是菱形;
④一組對(duì)邊平行且一組對(duì)角相等的四邊形是平行四邊形.
A.①②
B.③④
C.①②④
D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】郵遞員騎摩托車從郵局出發(fā),先向南騎行2km到達(dá)A村,繼續(xù)向南騎行3km到達(dá)B 村,然后向北騎行9km到C村,最后回到郵局.
(1)以郵局為原點(diǎn),以向北方向?yàn)檎较,?/span>1個(gè)單位長(zhǎng)度表示1km,請(qǐng)你在數(shù)軸上表示出A、B、C三個(gè)村莊的位置;
(2)C村離A村有多遠(yuǎn)?
(3)若摩托車每100km耗油3升,這趟路共耗油多少升?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣(2k+1)x+4(k﹣)=0.
(1)判斷這個(gè)一元二次方程的根的情況;
(2)若等腰三角形的一邊長(zhǎng)為3,另兩條邊的長(zhǎng)恰好是這個(gè)方程的兩個(gè)根,求這個(gè)等腰三角形的周長(zhǎng)及面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解方程﹣1的步驟如下:
(解析)第一步:﹣1(分?jǐn)?shù)的基本性質(zhì))
第二步:2x﹣1=3(2x+8)﹣3……(①)
第三步:2x﹣1=6x+24﹣3……(②)
第四步:2x﹣6x=24﹣3+1……(③)
第五步:﹣4x=22(④)
第六步:x=﹣……(⑤)
以上解方程第二步到第六步的計(jì)算依據(jù)有:①去括號(hào)法則.②等式性質(zhì)一.③等式性質(zhì)二.④合并同類項(xiàng)法則.請(qǐng)選擇排序完全正確的一個(gè)選項(xiàng)( )
A. ②①③④② B. ②①③④③ C. ③①②④③ D. ③①④②③
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com