【題目】設(shè)點Q到圖形W上每一個點的距離的最小值稱為點Q到圖形W的距離.例如正方形ABCD滿足A(1,0),B(2,0),C(2,1),D(1,1),那么點O(0,0)到正方形ABCD的距離為1.

(1)如果⊙P是以(3,4)為圓心,1為半徑的圓,那么點O(0,0)到⊙P的距離為
(2)求點M(3,0)到直線y=2x+1的距離;
(3)如果點N(0,a)到直線y=2x+1的距離為3,求a的值.

【答案】
(1)4
(2)解:直線y=2x+1記為l,如圖1,過點M作MH⊥l,垂足為點H,

設(shè)l與x,y軸的交點分別為E,F(xiàn),則E(﹣ ,0),

∴EF=

∵△EOF∽△EHM,

= ,即 =

∴MH= ;

∴點M到直線y=2x+1的距離為


(3)解:N在F點的上邊,如圖2,過點N作NG⊥l,垂足為點G,

∵△EOF∽△NGF,

= ,即 = ,

∴a=1+3 ;

N在F點的下邊,

同理可得a=1﹣3 ;

故a=1±3


【解析】解:(1)OP= =5, 點O(0,0)到⊙P的距離為5﹣1=4;
所以答案是:4;

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為2cm,動點P從點A出發(fā),在正方形的邊上沿A→B→C的方向運動到點C停止,設(shè)點P的運動路程為x(cm),在下列圖象中,能表示△ADP的面積y(cm2)關(guān)于x(cm)的函數(shù)關(guān)系的圖象是(  )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,△ABC中,AD⊥BC于D,AD=200,∠B=30°,∠C=45°.求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,O為AB邊上一點,⊙O交AB于E,F(xiàn)兩點,BC切⊙O于點D,且CD= EF=1.
(1)求證:⊙O與AC相切;
(2)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小俊在A處利用高為1.5米的測角儀AB測得樓EF頂部E的仰角為30°,然后前進12米到達C處,又測得樓頂E的仰角為60°,求樓EF的高度.(結(jié)果精確到0.1米)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)圖象過點(﹣1,0),頂點為(1,2),則結(jié)論:
①abc>0;②x=1時,函數(shù)最大值是2;③4a+2b+c>0;④2a+b=0;⑤2c<3b.
其中正確的結(jié)論有( )

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某服裝店購進一批秋衣,價格為每件30元.物價部門規(guī)定其銷售單價不高于每件60元,不低于每件30元.經(jīng)市場調(diào)查發(fā)現(xiàn):日銷售量y(件)是銷售單價x(元)的一次函數(shù),且當x=60時,y=80;x=50時,y=100.在銷售過程中,每天還要支付其他費用450元.
(1)求出y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.
(2)求該服裝店銷售這批秋衣日獲利w(元)與銷售單價x(元)之間的函數(shù)關(guān)系式.
(3)當銷售單價為多少元時,該服裝店日獲利最大?最大獲利是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】水龍頭關(guān)閉不嚴會造成滴水,容器內(nèi)盛水量w(L)與滴水時間t(h)的關(guān)系用可以顯示水量的容器做如圖1的試驗,并根據(jù)試驗數(shù)據(jù)繪制出如圖2的函數(shù)圖象,結(jié)合圖象解答下列問題.

(1)容器內(nèi)原有水多少升?
(2)求w與t之間的函數(shù)關(guān)系式,并計算在這種滴水狀態(tài)下一天的滴水量是多少升?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:AB、CD為⊙O的直徑,弦BE交CD于點F,連接DE交AB于點G,GO=GD.
(1)如圖1,求證:DE=DF;

(2)如圖2,作弦AK∥DC,AK交BE于點N,連接CK,求證:四邊形KNFC為平行四邊形;
(3)如圖3,作弦CH,連接DH,∠CDH=3∠EDH,CH=2 ,BE=4 ,求DH的長.

查看答案和解析>>

同步練習冊答案