【題目】讀一讀:式子“1+2+3+4+5+……+100”表示從1開始的100個連續(xù)自然數(shù)的和.由于上述式子比較長,書寫也不方便,為了簡便起見,我們可將“1+2+3+4+5+……+100”表示為,這里“”是求和符號.例如:“1+3+5+7+9+……+99”(即從1開始的100以內(nèi)的連續(xù)奇數(shù)的和)可表示為;又如“13+23+33+43+53+63+73+83+93+103”可表示為.同學(xué)們,通過對以上材料的閱讀,請解答下列問題:
①2+4+6+8+10+……+100(即從2開始的100以內(nèi)的連續(xù)偶數(shù)的和)用求和符號可表示為 ;
②計算:= (填寫最后的計算結(jié)果).
③求:的值.(寫出必要的過程)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:﹣4,|﹣2|,﹣2,﹣(﹣3.5),0,.
(1)在如圖所示的數(shù)軸上表示出以上各數(shù);
(2)比較以上各數(shù)的大小,用“<”號連接起來;
_____<_____<______<______<______<______
(3)在以上各數(shù)中選擇恰當(dāng)?shù)臄?shù)填在圖中這兩個圈的(重疊)部分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某天一個巡警騎摩托車在一條南北大道上巡邏,他從崗?fù)こ霭l(fā),在某個時刻停留在A處,規(guī)定以崗?fù)樵c,向北方向為正,這段時間行駛紀錄如下(單位:千米)
,,,,,,,.
(1)在崗?fù)つ膫方向?距崗?fù)ざ噙h?
(2)若摩托車行駛每千米耗油升,每升元,且最后返回崗?fù),這一天耗油共需多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD、正方形A1B1C1D1、正方形A2B2C2D2均位于第一象限內(nèi),它們的邊平行于x軸或y軸,其中點A、A1、A2在直線OM上,點C、C1、C2在直線ON上,O為坐標原點,已知點A的坐標為(3,3),正方形ABCD的邊長為1.若正方形A2B2C2D2的邊長為2011,則點B2的坐標為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在0,3.14,,2π,-,,-0.4,-,4.262262226…(每兩個”6”之間依次多一個”2”)中,
屬于有理數(shù)的有_________________________________________________;
屬于無理數(shù)的有________________________________________________________;
屬于正實數(shù)的有_________________________________________________________;
屬于負實數(shù)的有_____________________________________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點A、B在數(shù)軸上分別表示數(shù)a,b.若A、B兩點間的距離記為d,則d和a,b之間的數(shù)量關(guān)系是d=|a-b|.
(1)數(shù)軸上有理數(shù)x與有理數(shù)-2所對應(yīng)兩點之間的距離可以表示為______;
(2)|x+6|可以表示數(shù)軸上有理數(shù)x與有理數(shù)_______所對應(yīng)的兩點之間的距離;
若|x+6|= |x -2|,則x=______;
(3)若a=1,b=-2,將數(shù)軸折疊,使得A點與﹣7表示的點重合,則B點與數(shù)______表示的點P重合;
(4)若數(shù)軸上M、N兩點之間的距離為11(M在N的左側(cè)),且M、N兩點經(jīng)過(3)中折疊后互相重合,則M、N兩點表示的數(shù)分別是:M:_____, N:_______;
(5)在題(3)的條件下,點A為定點,點B、P為動點,若移動點B、P中一點后,能否使相鄰兩點間距離相等?若能,請寫出移動方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:一次函數(shù)y=﹣x+2的圖象分別與x軸、y軸交于點A、B.
(1)請直接寫出A,B兩點坐標:A 、B
(2)在直角坐標系中畫出函數(shù)圖象;
(3)若平面內(nèi)有一點C(5,3),請連接AC、BC,則△ABC是 三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖四邊形ABCD,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3,P為AB邊上的一動點,以PD,PC為邊作平行四邊形PCQD,則對角線PQ的長的最小值是( 。
A.3B.4C.5D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的邊AB是⊙O的弦.
(1)如圖1,若AB是⊙O的直徑,AB=AC,BC交⊙O于點D,且DM⊥AC于M,請判斷直線DM與⊙O的位置關(guān)系,并給出證明;
(2)如圖2,AC交⊙O于點E,若E恰好是的中點,點E到AB的距離是8,且AB長為24,求⊙O的半徑長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com