【題目】如圖(1)是某河上一座古拱橋的截面圖,拱橋橋洞上沿是拋物線形狀.拋物線兩端點與水面的距離都是1m,拱橋的跨度為10cm.橋洞與水面的最大距離是5m.橋洞兩側(cè)壁上各有一盞距離水面4m的景觀燈.現(xiàn)把拱橋的截面圖放在平面直角坐標系中,如圖(2).求:

(1)拋物線的解析式;
(2)兩盞景觀燈P1、P2之間的水平距離.

【答案】
(1)解:拋物線的頂點坐標為(5,5),與y軸交點坐標是(0,1),

設(shè)拋物線的解析式是y=a(x﹣5)2+5,

把(0,1)代入y=a(x﹣5)2+5,

得a=﹣

∴y=﹣ (x﹣5)2+5(0≤x≤10)


(2)解:由已知得兩景觀燈的縱坐標都是4,

∴4=﹣ (x﹣5)2+5,

(x﹣5)2=1,

∴x1= ,x2=

∴兩景觀燈間的距離為 =5米


【解析】(1)由圖形可知這是一條拋物線,根據(jù)圖形也可以知道拋物線的頂點坐標為(5,5),與y軸交點坐標是(0,1),設(shè)出拋物線的解析式將兩點代入可得拋物線方程;(2)第二題中要求燈的距離,只需要把縱坐標為4代入,求出x,然后兩者相減,就是它們的距離.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠BAC=∠ACD=90°,∠B=∠D.若AB=3cm,BC=5cm,點PB點出發(fā),以1cm/s的速度沿BC→CD→DA運動至A點停止,則從運動開始經(jīng)過多少時間,△ABP為等腰三角形?

備用圖1

備用圖2 備用圖3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將△ABC繞著點C順時針旋轉(zhuǎn)50°后得到△A′B′C′.若∠A=40°,∠B′=110°,則∠BCA′的度數(shù)是(

A.90°
B.80°
C.50°
D.30°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,△ABC和△CDE都是等腰直角三角形,∠C=90°,將△CDE繞點C逆時針旋轉(zhuǎn)一個角度α(0°<α<90°),使點A,D,E在同一直線上,連接AD,BE.

(1)①依題意補全圖2;
②求證:AD=BE,且AD⊥BE;
③作CM⊥DE,垂足為M,請用等式表示出線段CM,AE,BE之間的數(shù)量關(guān)系;
(2)如圖3,正方形ABCD邊長為 ,若點P滿足PD=1,且∠BPD=90°,請直接寫出點A到BP的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】石頭剪子布,又稱“猜丁殼”,是一種起源于中國流傳多年的猜拳游戲,游戲時的各方每次用一只手做“石頭”、“剪刀”、“布”三種手勢中的一種,規(guī)定“石頭”勝“剪刀”、“剪刀”勝“布”、“布”勝“石頭”.兩人游戲時,若出現(xiàn)相同手勢,則不分勝負游戲繼續(xù),直到分出勝負,游戲結(jié)束,三人游戲時,若三種手勢都相同或都不相同,則不分勝負游戲繼續(xù),若出現(xiàn)兩人手勢相同,則視為一種手勢與第三人所出手勢進行對決,此時,參照兩人游戲規(guī)則,例如甲、乙二人同時出石頭,丙出剪刀,則甲、乙獲勝,假定甲、乙、丙三人每次都是隨機地做這三種手勢,那么:
(1)直接寫出一次游戲中甲、乙兩人出第一次手勢時,不分勝負的概率;
(2)請你畫出樹狀圖求出一次游戲中甲、乙、丙三人出第一次手勢時,不分勝負的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠ACB=60°,半徑為1cm的⊙O切BC于點C,若將⊙O在CB上向右滾動,則當滾動到⊙O與CA也相切時,圓心O移動的水平距離是cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】取一副三角板按如圖所示拼接,固定三角板ADC,將三角板ABC繞點A順時針方向旋轉(zhuǎn),旋轉(zhuǎn)角度為α(0°<α≤45°),得到△ABC′.

①當α為多少度時,ABDC?

②當旋轉(zhuǎn)到圖③所示位置時,α為多少度?

③連接BD,當0°<α≤45°時,探求∠DBC′+CAC′+BDC值的大小變化情況,并給出你的證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一副直角三角板如圖放置,點A在ED上,∠F=∠ACB=90°,∠E=30°,∠B=45°,AC=12,試求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,將△ABC繞點A按逆時針方向旋轉(zhuǎn)100°,得到△ADE,連接BD、CE. 求證:BD=CE.

查看答案和解析>>

同步練習(xí)冊答案