【題目】如圖,∠ACB=60°,半徑為1cm的⊙O切BC于點C,若將⊙O在CB上向右滾動,則當滾動到⊙O與CA也相切時,圓心O移動的水平距離是cm.

【答案】
【解析】解:如圖,當圓O滾動到圓W位置與CA,CB相切,切點分別為E,F(xiàn); 連接WE,WF,CW,OC,OW,則OW=CF,WF=1,∠WCF= ∠ACB=30°,
所以點O移動的距離為OW=CF=WFcot∠WCF=WFcot30°=

根據(jù)題意畫圖,當圓O滾動到圓W位置與CA,CB相切,切點分別為E,F(xiàn),連接WE,WF,CW,OC,OW,則四邊形OWC是矩形;構(gòu)造直角三角形利用直角三角形中的30°角的三角函數(shù)值,可求得點O移動的距離為OW=CF=WFcot∠WCF=WFcot30°=

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知E是矩形ABCD的邊CD上一點,BF⊥AE于F,試說明:△ABF∽△EAD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市教育局對某鎮(zhèn)實施教育精準扶貧,為某鎮(zhèn)建中、小型兩種圖書室共30個.計劃養(yǎng)殖類圖書不超過2000本,種植類圖書不超過1600本.已知組建一個中型圖書室需養(yǎng)殖類圖書80本,種植類圖書50本;組建一個小型圖書室需養(yǎng)殖類圖書30本,種植類圖書60本.

1)符合題意的組建方案有幾種?請寫出具體的組建方案;

2)若組建一個中型圖書室的費用是2000元,組建一個小型圖書室的費用是1500元,哪種方案費用最低,最低費用是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,方格紙中的每個小方格都是邊長為1個單位長度的正方形,每個小正方形的頂點叫格點,△ABC的頂點均在格點上.

(1)畫出將△ABC向右平移2個單位后得到的△A1B1C1 , 再畫出將△A1B1C1繞點B1按逆時針方向旋轉(zhuǎn)90°后所得到的△A2B1C2;
(2)求線段B1C1旋轉(zhuǎn)到B1C2的過程中,點C1所經(jīng)過的路徑長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1)是某河上一座古拱橋的截面圖,拱橋橋洞上沿是拋物線形狀.拋物線兩端點與水面的距離都是1m,拱橋的跨度為10cm.橋洞與水面的最大距離是5m.橋洞兩側(cè)壁上各有一盞距離水面4m的景觀燈.現(xiàn)把拱橋的截面圖放在平面直角坐標系中,如圖(2).求:

(1)拋物線的解析式;
(2)兩盞景觀燈P1、P2之間的水平距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某個體戶購進一批時令水果,20天銷售完畢,他將本次銷售情況進行了跟蹤記錄,根據(jù)所記錄的數(shù)據(jù)繪制如下的函數(shù)圖象,其中日銷售量y(千克)與銷售時間x(天)之間的函數(shù)關(guān)系如圖(1)所示,銷售單價p(元/千克)與銷售時間x(天)之間的函數(shù)關(guān)系如圖(2)所示。(銷售額=銷售單價×銷售量)

(1)直接寫出y與x之間的函數(shù)解析式;

(2)分別求第10天和第15天的銷售額;

(3)若日銷售量不低于24千克的時間段為“最佳銷售期”,則此次銷售過程中,“最佳銷售期”共有多少天?在此期間銷售單價最高為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足為F.

(1)求證:△ABC≌△ADE;

(2)求∠FAE的度數(shù);

(3)求證:CD=2BF+DE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在矩形ABCD中,AB=a,BC=b,點E是線段AD邊上的任意一點(不含端點A、D),連接BE、CE.

若a=5,sin∠ACB= ,解答下列問題:
(1)填空:b=
(2)當BE⊥AC時,求出此時AE的長;
(3)設(shè)AE=x,試探索點E在線段AD上運動過程中,使得△ABE與△BCE相似時,請寫x、a、b三者的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖①,在四邊形ABCD中,ABDC,EBC的中點,若AE是∠BAD的平分線,試探究AB,AD,DC之間的等量關(guān)系,證明你的結(jié)論;

(2)如圖②,在四邊形ABCD中,ABDC,AFDC的延長線交于點F,EBC的中點,若AE是∠BAF的平分線,試探究AB,AF,CF之間的等量關(guān)系,證明你的結(jié)論.

查看答案和解析>>

同步練習冊答案