若x=123456789×123456786,y=123456788×123456787,則x,y的大小關(guān)系是( )
A.x=y
B.x<y
C.x>y
D.不確定
【答案】分析:根據(jù)數(shù)字的關(guān)系與因式分解,首先將x、y中123456789、123456786、123456787均用123456788表示,即x、y用123456788表示,再比較大。
解答:解:∵x=123456789×123456786=(123456788+1)(123456788-2)=1234567882-123456788-2
y=123456788×123456787=123456788×(123456788-1)=1234567882-123456788
顯然x<y
故選B
點評:本題考查因式分解的應(yīng)用.解決本題的關(guān)鍵是能夠?qū)、y中123456789、123456786、123456787均用123456788表示,從而降低了運算的工作量.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

2012年3月23日至3月25日為期3天、以“云聯(lián)世界感知未來”為主題的2012中國(重慶)國際云計算博覽會(下稱云博會)在渝召開,重慶新市委書記張德江說在未來10年內(nèi)重慶實施“云端計劃”建設(shè)智慧重慶. 市委市政府非常重視“云端服務(wù)器”的建設(shè),幾年前就已經(jīng)著手建設(shè)“云端服務(wù)器”,據(jù)統(tǒng)計,某行政區(qū)在去年前7個月內(nèi),“云端服務(wù)器”的數(shù)量與月份之間的關(guān)系如下表:
月份x(月)1234567
云端服務(wù)器數(shù)量y1(臺)32343638404244
而由于部分地區(qū)陸續(xù)被劃分到其它行政區(qū),該行政區(qū)8至12月份“云端服務(wù)器”數(shù)量y2(臺)與月份x(月)之間存在如圖所示的變化趨勢:
(1)請觀察表格,用所學(xué)過的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關(guān)知識,直接寫出y1與x之間的函數(shù)關(guān)系式,根據(jù)如圖所示的變化趨勢,直接寫出y2與x之間滿足的一次函數(shù)關(guān)系式;
(2)在2011年內(nèi),市政府每月對每一臺云端服務(wù)器的資金也隨月份發(fā)生改變,若對每一臺服務(wù)器的投入的資金p1(萬元)與月份x滿足函數(shù)關(guān)系式:p1=-0.5x+10.5,(1≤x≤7,且x為整數(shù));8至12月份的資金投入p2(萬元)與月份x滿足函數(shù)關(guān)系式:p2=0.5x+10(8≤x≤12,且x為整數(shù))求去年哪個月政府對該片區(qū)的資金投入最大,并求出這個最大投入;
(3)2012年1月到3月份,政府計劃該區(qū)的云端服務(wù)器每月的數(shù)量比去年12份減少2a%,在去年12月份的基礎(chǔ)上每月每一臺云端服務(wù)器資金投入量將增加0.5a%,某民營企業(yè)為表示對“智慧重慶”的鼎力支持,決定在1月到3月份對每臺云端服務(wù)器分別贊助3萬元.若計劃1月到3月份用于云端服務(wù)器所需的資金總額(政府+民企贊助)一共達到546萬元,請參考以下數(shù)據(jù),估計a的整數(shù)值.(參考數(shù)據(jù):172=289,182=324,QUOTE 872=7569,882=7744,892=7921)192=361)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某精品水果超市銷售一種進口水果A,從去年1至7月,這種水果的進價一路攀升,每千克A的進價與月份,且為整數(shù)),之間的函數(shù)關(guān)系式如下表 :
月份
1
2
3
4
5
6
7
(元/千克)
50
60
70
80
90
100
110
隨著我國對一些國家進出口關(guān)稅的調(diào)整,該水果的進價漲勢趨緩,在8至12月份每千克水果A的進價與月份,且為整數(shù))之間存在如下圖所示的變化趨勢.
(1)請觀察表格和圖像,用所學(xué)過的一次函數(shù)、反比例函數(shù)、二次函數(shù)的有關(guān)知識分別寫出 與的函數(shù)關(guān)系式.
(2)若去年該水果的售價為每千克180元,且銷售該水果每月必須支出(除進價外)的固定支出為300元,已知該水果在1月至7月的銷量(千克)與月份滿足:;8月至12月的銷量(千克)與月份滿足:;則該水果在第幾月銷售時,可使該月所獲得的利潤最大?并求出此時的最大利潤.
(3)今年1月到6月,該進口水果的進價進行調(diào)整,每月進價均比去年12月的進價上漲15元,且每月的固定支出(除進價外)增加了15%,已知該進口水果的售價在去年的基礎(chǔ)上提高了<100),與此同時每月的銷量均在去年12月的基礎(chǔ)上減少了,這樣銷售下去要使今年1至6月的總利潤為68130元,試求出的值.(保留兩個有效數(shù)字)(參考數(shù)據(jù): ,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012年重慶一中初三上學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

某精品水果超市銷售一種進口水果A,從去年1至7月,這種水果的進價一路攀升,每千克A的進價與月份,且為整數(shù)),之間的函數(shù)關(guān)系式如下表 :

月份
1
2
3
4
5
6
7
(元/千克)
50
60
70
80
90
100
110
隨著我國對一些國家進出口關(guān)稅的調(diào)整,該水果的進價漲勢趨緩,在8至12月份每千克水果A的進價與月份,且為整數(shù))之間存在如下圖所示的變化趨勢.
(1)請觀察表格和圖像,用所學(xué)過的一次函數(shù)、反比例函數(shù)、二次函數(shù)的有關(guān)知識分別寫出 與的函數(shù)關(guān)系式.
(2)若去年該水果的售價為每千克180元,且銷售該水果每月必須支出(除進價外)的固定支出為300元,已知該水果在1月至7月的銷量(千克)與月份滿足:;8月至12月的銷量(千克)與月份滿足:;則該水果在第幾月銷售時,可使該月所獲得的利潤最大?并求出此時的最大利潤.
(3)今年1月到6月,該進口水果的進價進行調(diào)整,每月進價均比去年12月的進價上漲15元,且每月的固定支出(除進價外)增加了15%,已知該進口水果的售價在去年的基礎(chǔ)上提高了<100),與此同時每月的銷量均在去年12月的基礎(chǔ)上減少了,這樣銷售下去要使今年1至6月的總利潤為68130元,試求出的值.(保留兩個有效數(shù)字)(參考數(shù)據(jù): ,,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆重慶巴蜀中學(xué)九年級中考第五次6月考試押題數(shù)學(xué)試卷(帶解析) 題型:解答題

2012年3月23日至3月25日為期3天、以“云聯(lián)世界感知未來”為主題的2012中國(重慶)國際云計算博覽會(下稱云博會)在渝召開,重慶新市委書記張德江說在未來10年內(nèi)重慶實施“云端計劃” 建設(shè)智慧重慶。 市委市政府非常重視“云端服務(wù)器”的建設(shè),幾年前就已經(jīng)著手建設(shè)“云端服務(wù)器”,據(jù)統(tǒng)計,某行政區(qū)在去年前7個月內(nèi),“云端服務(wù)器”的數(shù)量與月份之間的關(guān)系如下表:

月份x(月)
1
2
3
4
5
6
7
云端服務(wù)器數(shù)量(臺)
32
34
36
38
40
42
44
而由于部分地區(qū)陸續(xù)被劃分到其它行政區(qū),該行政區(qū)8至12月份“云端服務(wù)器”數(shù)量(臺)與月份x(月)之間存在如圖所示的變化趨勢:

(1)請觀察表格,用所學(xué)過的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關(guān)知識,直接寫出與x之間的函數(shù)關(guān)系式,根據(jù)如圖所示的變化趨勢,直接寫出與x之間滿足的一次函數(shù)關(guān)系式;
(2)在2011年內(nèi),市政府每月對每一臺云端服務(wù)器的資金也隨月份發(fā)生改變,若對每一臺服務(wù)器的投入的資金(萬元)與月份x滿足函數(shù)關(guān)系式: ,(1≤x≤7,且x為整數(shù));8至12月份的資金投入(萬元)與月份x滿足函數(shù)關(guān)系式:(8≤x≤12,且x為整數(shù))求去年哪個月政府對該片區(qū)的資金投入最大,并求出這個最大投入;
(3)2012年1月到3月份,政府計劃該區(qū)的云端服務(wù)器每月的數(shù)量比去年12份減少2a%,在去年12月份的基礎(chǔ)上每月每一臺云端服務(wù)器資金投入量將增加0.5a%,某民營企業(yè)為表示對“智慧重慶”的鼎力支持,決定在1月到3月份對每臺云端服務(wù)器分別贊助3萬元。若計劃1月到3月份用于云端服務(wù)器所需的資金總額(政府+民企贊助)一共達到546萬元,請參考以下數(shù)據(jù),估計a的整數(shù)值。(參考數(shù)據(jù):172=289,182=324,192=361)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年重慶市巴蜀中學(xué)中考數(shù)學(xué)模擬試卷(6月份)(解析版) 題型:解答題

2012年3月23日至3月25日為期3天、以“云聯(lián)世界感知未來”為主題的2012中國(重慶)國際云計算博覽會(下稱云博會)在渝召開,重慶新市委書記張德江說在未來10年內(nèi)重慶實施“云端計劃”建設(shè)智慧重慶. 市委市政府非常重視“云端服務(wù)器”的建設(shè),幾年前就已經(jīng)著手建設(shè)“云端服務(wù)器”,據(jù)統(tǒng)計,某行政區(qū)在去年前7個月內(nèi),“云端服務(wù)器”的數(shù)量與月份之間的關(guān)系如下表:
月份x(月)1234567
云端服務(wù)器數(shù)量y1(臺)32343638404244
而由于部分地區(qū)陸續(xù)被劃分到其它行政區(qū),該行政區(qū)8至12月份“云端服務(wù)器”數(shù)量y2(臺)與月份x(月)之間存在如圖所示的變化趨勢:
(1)請觀察表格,用所學(xué)過的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關(guān)知識,直接寫出y1與x之間的函數(shù)關(guān)系式,根據(jù)如圖所示的變化趨勢,直接寫出y2與x之間滿足的一次函數(shù)關(guān)系式;
(2)在2011年內(nèi),市政府每月對每一臺云端服務(wù)器的資金也隨月份發(fā)生改變,若對每一臺服務(wù)器的投入的資金p1(萬元)與月份x滿足函數(shù)關(guān)系式:p1=-0.5x+10.5,(1≤x≤7,且x為整數(shù));8至12月份的資金投入p2(萬元)與月份x滿足函數(shù)關(guān)系式:p2=0.5x+10(8≤x≤12,且x為整數(shù))求去年哪個月政府對該片區(qū)的資金投入最大,并求出這個最大投入;
(3)2012年1月到3月份,政府計劃該區(qū)的云端服務(wù)器每月的數(shù)量比去年12份減少2a%,在去年12月份的基礎(chǔ)上每月每一臺云端服務(wù)器資金投入量將增加0.5a%,某民營企業(yè)為表示對“智慧重慶”的鼎力支持,決定在1月到3月份對每臺云端服務(wù)器分別贊助3萬元.若計劃1月到3月份用于云端服務(wù)器所需的資金總額(政府+民企贊助)一共達到546萬元,請參考以下數(shù)據(jù),估計a的整數(shù)值.(參考數(shù)據(jù):172=289,182=324,QUOTE 872=7569,882=7744,892=7921)192=361)

查看答案和解析>>

同步練習(xí)冊答案