【題目】如圖,在矩形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,點(diǎn)EF分別是AO、AD的中點(diǎn),若AB6 cm,BC8 cm,則AEF的周長(zhǎng)為________cm

【答案】9

【解析】利用勾股定理求出AC,再根據(jù)矩形的對(duì)角線互相平分且相等求出OA=OD=AC,然后根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半可得EF=OD,再求出AF,AE,然后根據(jù)三角形的周長(zhǎng)公式列式計(jì)算即可得解.

解:由勾股定理得,AC===10cm,

∵四邊形ABCD是矩形,

OA=OD=AC=×10=5cm,

∵點(diǎn)E、F分別是AO、AD的中點(diǎn),

EF=OD=cm,

AF=×8=4cm,

AE=OA=cm,

∴△AEF的周長(zhǎng)=+4+=9cm.

故答案為:9.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,將三角形各點(diǎn)的縱坐標(biāo)都減去3,橫坐標(biāo)保持不變,所得圖形與原圖形相比( )

A. 向右平移了3個(gè)單位長(zhǎng)度B. 向左平移了3個(gè)單位長(zhǎng)度

C. 向上平移了3個(gè)單位長(zhǎng)度D. 向下平移了3個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若順次連接四邊形ABCD各邊中點(diǎn)所得四邊形是矩形,則四邊形ABCD必然是( )
A.菱形
B.對(duì)角線相互垂直的四邊形
C.正方形
D.對(duì)角線相等的四邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商家預(yù)測(cè)一種應(yīng)季襯衫能暢銷(xiāo)市場(chǎng),就用13200元購(gòu)進(jìn)了一批這種襯衫,面市后果然供不應(yīng)求,商家又用28800元購(gòu)進(jìn)了第二批這種襯衫,所購(gòu)數(shù)量是第一批購(gòu)進(jìn)量的2倍,但單價(jià)貴了10元.
(1)該商家購(gòu)進(jìn)的第一批襯衫是多少件?
(2)若兩批襯衫按相同的標(biāo)價(jià)銷(xiāo)售,最后剩下50件按八折優(yōu)惠賣(mài)出,如果兩批襯衫全部售完后利潤(rùn)不低于25%(不考慮其他因素),那么每件襯衫的標(biāo)價(jià)至少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形AOBC,點(diǎn)A、B分別在x、y軸上,對(duì)角線AB、OC交于點(diǎn)D,點(diǎn)C( ,1),點(diǎn)M是射線OC上一動(dòng)點(diǎn).

(1)求證:△ACD是等邊三角形;
(2)若△OAM是等腰三角形,求點(diǎn)M的坐標(biāo);
(3)若N是OA上的動(dòng)點(diǎn),則MA+MN是否存在最小值?若存在,請(qǐng)求出這個(gè)最小值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列計(jì)算正確的是

A. (x2y)(x2y)x24y2B. (x2)2x24

C. (x2)(x3)x2x6D. (x1)(x1)1x2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】多項(xiàng)式x3﹣x的因式為( 。
A.x、(x﹣1)
B.(x+1)
C.x2﹣x
D.以上都是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若點(diǎn)Pa,a﹣2)在第四象限,則a的取值范圍是( 。

A﹣2a0B、0a2

C、a2D、a0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,反比例函數(shù)(x>0)的圖象經(jīng)過(guò)矩形OABC對(duì)角線的交點(diǎn)M,分別與AB、BC交于點(diǎn)D、E,若四邊形ODBE的面積為9,則k的值為( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習(xí)冊(cè)答案