【題目】如圖,反比例函數(shù)(x>0)的圖象經(jīng)過矩形OABC對角線的交點M,分別與AB、BC交于點D、E,若四邊形ODBE的面積為9,則k的值為( 。

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】本題可從反比例函數(shù)圖象上的點E、M、D入手,分別找出△OCE、△OAD、矩形OABC的面積與|k|的關系,列出等式求出k值.

解:由題意得:E、M、D位于反比例函數(shù)圖象上,則S△OCE=,S△OAD=

過點M作MG⊥y軸于點G,作MN⊥x軸于點N,則S□ONMG=|k|,

又∵M為矩形ABCO對角線的交點,

∴S矩形ABCO=4S□ONMG=4|k|,

由于函數(shù)圖象在第一象限,k>0,則++9=4k,

解得:k=3.

故選C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,對角線ACBD相交于點O,點E、F分別是AO、AD的中點,若AB6 cm,BC8 cm,則AEF的周長為________cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,ABCD中,AD=3cm,CD=1cm,∠B=45°,點P從點A出發(fā),沿AD方向勻速運動,速度為3cm/s;點Q從點C出發(fā),沿CD方向勻速運動,速度為1cm/s,連接并延長QP交BA的延長線于點M,過M作MN⊥BC,垂足是N,設運動時間為t(s)(0<t<1).

(1)當t為何值時,四邊形AQDM是平行四邊形?

(2)證明:在P、Q運動的過程中,總有CQ=AM;

(3)是否存在某一時刻t,使四邊形ANPM的面積是平行四邊形ABCD的面積的一半?若存在,求出相應的t值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若方程(m-1)x|m|-2y2n+7=5是關于x,y的二元一次方程,則(m-n)在第_____象限

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知在長方形ABCD中,AB=4,BC= ,O為BC上一點,BO= ,如圖所示,以BC所在直線為x軸,O為坐標原點建立平面直角坐標系,M為線段OC上的一點.

(1)若點M的坐標為(1,0),如圖①,以OM為一邊作等腰△OMP,使點P在y軸上,則符合條件的等腰三角形有幾個?請直接寫出所有符合條件的點P的坐標;
(2)若點M的坐標為(1,0),如圖①,以OM為一邊作等腰△OMP,使點P落在長方形ABCD的一邊上,則符合條件的等腰三角形有幾個?請直接寫出所有符合條件的點P的坐標.
(3)若將(2)中的點M的坐標改為(4,0),其它條件不變,如圖②,那么符合條件的等腰三角形有幾個?求出所有符合條件的點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b(k≠0)的圖象過點P(,0),且與反比例函數(shù)y=(m≠0)的圖象相交于點A(﹣2,1)和點B.

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)求點B的坐標,并根據(jù)圖象回答:當x在什么范圍內取值時,一次函數(shù)的函數(shù)值小于反比例函數(shù)的函數(shù)值?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一輛貨車從A地開往B地,一輛小汽車從B地開往A地.同時出發(fā),都勻速行駛,各自到達終點后停止.設貨車、小汽車之間的距離為s(千米),貨車行駛的時間為t(小時),S與t之間的函數(shù)關系如圖所示.下列說法中正確的有( )

①A,B兩地相距60千米:
②出發(fā)1小時,貨車與小汽車相遇;
③出發(fā)1.5小時,小汽車比貨車多行駛了60千米;
④小汽車的速度是貨車速度的2倍.
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲乙兩臺智能機器人從同一地點出發(fā),沿著筆直的路線行走了450cm.甲比乙先出發(fā),乙出發(fā)一段時間后速度提高為原來的2倍.兩機器人行走的路程y(cm)與時間x(s)之間的函數(shù)圖像如圖所示,根據(jù)圖像所提供的信息解答下列問題:

(1)乙比甲晚出發(fā)秒,乙提速前的速度是每秒cm, =;
(2)已知甲勻速走完了全程,請補全甲的圖象;
(3)當x為何值時,乙追上了甲?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在四邊形ABCD中,對角線AC、BD相交于點O,將COD繞點O按逆時針方向旋轉得到C1OD1,旋轉角為θθ90°),連接AC1、BD1AC1BD1交于點P

1)如圖1,若四邊形ABCD是正方形.

①求證:AOC1≌△BOD1

②請直接寫出AC1 BD1的位置關系.

2)如圖2,若四邊形ABCD是菱形,AC=6,BD=8,設AC1=kBD1.判斷AC1BD1的位置關系,說明理由,并求出k的值.

3)如圖3,若四邊形ABCD是平行四邊形,AC=6,BD=12,連接DD1,設AC1=kBD1.直接寫出k的值和AC12+kDD12的值.

查看答案和解析>>

同步練習冊答案