【題目】如圖1,在△ABC中,∠A=30°,點(diǎn)P從點(diǎn)A出發(fā)以2cm/s的速度沿折線A﹣C﹣B運(yùn)動(dòng),點(diǎn)Q從點(diǎn)A出發(fā)以a(cm/s)的速度沿AB運(yùn)動(dòng),P,Q兩點(diǎn)同時(shí)出發(fā),當(dāng)某一點(diǎn)運(yùn)動(dòng)到點(diǎn)B時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為x(s),△APQ的面積為y(cm2),y關(guān)于x的函數(shù)圖象由C1,C2兩段組成,如圖2所示.
(1)求a的值;
(2)求圖2中圖象C2段的函數(shù)表達(dá)式;
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到線段BC上某一段時(shí)△APQ的面積,大于當(dāng)點(diǎn)P在線段AC上任意一點(diǎn)時(shí)△APQ的面積,求x的取值范圍.
【答案】(1)1;(2);(3)2<x<3.
【解析】
試題分析:(1)作PD⊥AB于D,根據(jù)直角三角形的性質(zhì)得到PD=AP=x,根據(jù)三角形的面積公式得到函數(shù)解析式,代入計(jì)算;
(2)根據(jù)當(dāng)x=4時(shí),y=,求出sinB,得到圖象C2段的函數(shù)表達(dá)式;
(3)求出 的最大值,根據(jù)二次函數(shù)的性質(zhì)計(jì)算即可.
試題解析:(1)如圖1,作PD⊥AB于D,∵∠A=30°,∴PD=AP=x,∴y=AQPD=,由圖象可知,當(dāng)x=1時(shí),y=,∴×a×12=,解得,a=1;
(2)如圖2,作PD⊥AB于D,由圖象可知,PB=5×2﹣2x=10﹣2x,PD=PBsinB=(10﹣2x)sinB,∴y=×AQ×PD=x×(10﹣2x)sinB,∵當(dāng)x=4時(shí),y=,∴×4×(10﹣2×4)sinB=,解得,sinB=,∴y=x×(10﹣2x)×,即 ;
(3),解得,x1=0,x2=2,由圖象可知,當(dāng)x=2時(shí),有最大值,最大值是×22=2,=2,解得,x1=3,x2=2,∴當(dāng)2<x<3時(shí),點(diǎn)P運(yùn)動(dòng)到線段BC上某一段時(shí)△APQ的面積,大于當(dāng)點(diǎn)P在線段AC上任意一點(diǎn)時(shí)△APQ的面積.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)下列表中的對(duì)應(yīng)值:
x | 2.1 | 2.2 | 2.3 | 2.4 |
ax2+bx+c | ﹣1.39 | ﹣0.76 | ﹣0.11 | 0.56 |
判斷方程ax2+bx+c=0(a≠0,a,b,c為常數(shù))的一個(gè)解的取值范圍為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,四邊形各頂點(diǎn)的坐標(biāo)分別為,動(dòng)點(diǎn)與同時(shí)從點(diǎn)出發(fā),運(yùn)動(dòng)時(shí)間為秒,點(diǎn)沿方向以單位長(zhǎng)度/秒的速度向點(diǎn)運(yùn)動(dòng),點(diǎn)沿折線運(yùn)動(dòng),在上運(yùn)動(dòng)的速度分別為(單位長(zhǎng)度/秒).當(dāng)中的一點(diǎn)到達(dá)點(diǎn)時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).
(1)求所在直線的函數(shù)表達(dá)式;
(2)如圖2,當(dāng)點(diǎn)在上運(yùn)動(dòng)時(shí),求的面積關(guān)于的函數(shù)表達(dá)式及的最大值;
(3)在,的運(yùn)動(dòng)過程中,若線段的垂直平分線經(jīng)過四邊形的頂點(diǎn),求相應(yīng)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=Rt∠,以BC為直徑的⊙O交AB于點(diǎn)D,切線DE交AC于點(diǎn)E.
(1)求證:∠A=∠ADE;
(2)若AD=16,DE=10,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一個(gè)正多邊形的每個(gè)外角都等于45°,則它是( )
A. 正六邊形
B. 正八邊形
C. 正十邊形
D. 正十二邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】昌平萬畝濱河森林公園占地3 980 000平方米,位于北京城市中軸線的北延線上,將北京城與十三陵水庫通過綠軸有機(jī)地聯(lián)系在一起,是名副其實(shí)的北京的“后花園”.把數(shù)字3 980 000用科學(xué)記數(shù)法表示為( )
A.39.8×105
B.3.98×106
C.3.98×107
D.0.398×107
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解本校七年級(jí)同學(xué)在雙休日參加體育鍛煉的時(shí)間,課題小組進(jìn)行了問卷調(diào)查(問卷調(diào)查表如圖所示),并用調(diào)查結(jié)果繪制了圖1,圖2兩幅統(tǒng)計(jì)圖(均不完整),請(qǐng)根據(jù)統(tǒng)計(jì)圖解答以下問題:
(1)本次接受問卷調(diào)查的同學(xué)有多少人?補(bǔ)全條形統(tǒng)計(jì)圖.
(2)本校有七年級(jí)同學(xué)800人,估計(jì)雙休日參加體育鍛煉時(shí)間在3小時(shí)以內(nèi)(不含3小時(shí))的人數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com