【題目】如圖,ABCD的對角線AC、BD交于點O,AE平分∠BAD交BC于點E,且∠ADC=60°,AB=BC,連接OE.下列結論:①∠CAD=30°;②SABCD=ABAC;③OB=AB;④OE=BC,成立的個數(shù)有( )
A.1個 B.2個 C.3個 D.4個
【答案】C
【解析】
試題分析:由四邊形ABCD是平行四邊形,得到∠ABC=∠ADC=60°,∠BAD=120°,根據(jù)AE平分∠BAD,得到∠BAE=∠EAD=60°推出△ABE是等邊三角形,由于AB=BC,得到AE=BC,得到△ABC是直角三角形,于是得到∠CAD=30°,故①正確;由于AC⊥AB,得到SABCD=ABAC,故②正確,根據(jù)AB=BC,OB=BD,且BD>BC,得到AB<OB,故③錯誤;根據(jù)三角形的中位線定理得到OE=AB,于是得到OE=BC,故④正確.
解:∵四邊形ABCD是平行四邊形,
∴∠ABC=∠ADC=60°,∠BAD=120°,
∵AE平分∠BAD,
∴∠BAE=∠EAD=60°
∴△ABE是等邊三角形,
∴AE=AB=BE,
∵AB=BC,
∴AE=BC,
∴∠BAC=90°,
∴∠CAD=30°,故①正確;
∵AC⊥AB,
∴SABCD=ABAC,故②正確,
∵AB=BC,OB=BD,且BD>BC,
∴AB<OB,故③錯誤;
∵CE=BE,CO=OA,
∴OE=AB,
∴OE=BC,故④正確.
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】若│a│=-a,則實數(shù)a在數(shù)軸上的對應點一定在( )
A. 原點左側 B. 原點或原點左側
C. 原點右側 D. 原點或原點右側
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個木工師傅測量了一個等腰三角形木板的腰、底邊和高的長,但他把這三個數(shù)據(jù)與其它的數(shù)據(jù)弄混了,請你幫助他找出來,是第( )組.
A. 13,12,12 B. 12,12,8 C. 13,10,12 D. 5,8,4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,AB∥OC,A(0,12),B(a,c),C(b,0),并且a,b滿足b=++16.一動點P從點A出發(fā),在線段AB上以每秒2個單位長度的速度向點B運動;動點Q從點O出發(fā)在線段OC上以每秒1個單位長度的速度向點C運動,點P、Q分別從點A、O同時出發(fā),當點P運動到點B時,點Q隨之停止運動.設運動時間為t(秒)
(1)求B、C兩點的坐標;
(2)當t為何值時,四邊形PQCB是平行四邊形?并求出此時P、Q兩點的坐標;
(3)當t為何值時,△PQC是以PQ為腰的等腰三角形?并求出P、Q兩點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在實數(shù)范圍內定義一種新運算“△”,其規(guī)則為:a△b=a2﹣b2,根據(jù)這個規(guī)則,4△3的值是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=8,BC=4,點E在邊AB上,點F在邊CD上,點G、H在對角線AC上,若四邊形EGFH是菱形,則AE的長是 .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com