【題目】如圖所示,小明某天上午9時(shí)騎自行車離開家,15時(shí)回家,他有意描繪了離家的距離與時(shí)間的變化情況.
(1)圖象表示了哪兩個(gè)變量的關(guān)系?哪個(gè)是自變量?哪個(gè)是因變量?
(2)他到達(dá)離家最遠(yuǎn)的地方是什么時(shí)間?離家多遠(yuǎn)?
(3)10時(shí)到12時(shí)他行駛了多少千米?
(4)他可能在哪段時(shí)間內(nèi)休息,并吃午餐?
(5)他由離家最遠(yuǎn)的地方返回時(shí)的平均速度是多少?
【答案】(1) 圖像表示了離家的距離與時(shí)間這兩個(gè)變量之間的關(guān)系.其中時(shí)間是自變量,離家的距離是因變量; (2) 他到達(dá)離家最遠(yuǎn)的地方是在12時(shí),離家30千米; (3) 10時(shí)到12時(shí)他行駛了15千米;(4) 他可能在12時(shí)到13時(shí)間內(nèi)休息,并吃午餐;(5) 他由離家最遠(yuǎn)的地方返回時(shí)的平均速度是15千米/時(shí)
【解析】
(1)根據(jù)圖象的x軸和y軸即可確定表示了哪兩個(gè)變量的關(guān)系;
(2)首先根據(jù)圖象找到離家最遠(yuǎn)的距離,由此即可確定他到達(dá)離家最遠(yuǎn)的地方是什么時(shí)間,離家多遠(yuǎn);
(3)根據(jù)圖象首先找到時(shí)間為10時(shí)和12時(shí)離家的距離,然后作差即可;
(4) 如果休息,那么距離沒有增加,由此就可以確定在哪段時(shí)間內(nèi)休息,并吃午餐;
(5) 根據(jù)返回時(shí)所走路程和使用時(shí)間即可求出返回時(shí)的平均速度.
解:(1) 圖像表示了離家的距離與時(shí)間這兩個(gè)變量之間的關(guān)系.其中時(shí)間是自變量,離家的距離是因變量;
(2)由圖象看出他到達(dá)離家最遠(yuǎn)的地方是在12時(shí),離家30千米;
(3)由圖象看出10時(shí)到12時(shí)他行駛了30-15=15千米;
(4)由圖象看出12:00~13:00時(shí)距離沒變且時(shí)間較長,得他可能在12時(shí)到13時(shí)間內(nèi)休息,并吃午餐;
(5)由圖象看出回家時(shí)用了2小時(shí),路程是30千米,所以回家的平均速度是30÷2=15(千米/時(shí)).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某貨站傳送貨物的平面示意圖. 為了提高傳送過程的安全性,工人師傅欲減小傳送帶與地面的夾角,使其由45°改為30°. 已知原傳送帶AB長為4米.
(1)求新傳送帶AC的長度;
(2)如果需要在貨物著地點(diǎn)C的左側(cè)留出2米的通道,試判斷距離B點(diǎn)4米的貨物 是否需要挪走,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形ABCD中,P為對角線BD上任意一點(diǎn),連接PA、PC,得到△PAB、△PBC、△PCD、△PDA,設(shè)它們的面積分別是S1、S2、S3、S4 , 給出如下結(jié)論:①S1=S2;②S1+S2=S3;③S1+S3=S2+S4;④若S1S3=S2S4 , 其中正確結(jié)論的序號是 . (在橫線上填上你認(rèn)為所有正確答案的序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AC∥DF,C、E分別在AB、DF上,小華想知道∠ACE和∠DEC是否互補(bǔ),但是他有沒有帶量角器,只帶了一副三角板,于是他想了這樣一個(gè)辦法:首先連結(jié)CF,再找出CF的中點(diǎn)O,然后連結(jié)EO并延長EO和直線AB相交于點(diǎn)B,經(jīng)過測量,他發(fā)現(xiàn)EO=BO,因此他得出結(jié)論:∠ACE和∠DEC互補(bǔ),而且他還發(fā)現(xiàn)BC=EF.
以下是他的想法,請你填上根據(jù).小華是這樣想的:
因?yàn)?/span>CF和BE相交于點(diǎn)O,
根據(jù) 得出∠COB=∠EOF;
而O是CF的中點(diǎn),那么CO=FO,又已知 EO=BO,
根據(jù) 得出△COB≌△FOE,
根據(jù) 得出BC=EF,
根據(jù) 得出∠BCO=∠F,
既然∠BCO=∠F,根據(jù) 出AB∥DF,
既然AB∥DF,根據(jù) 得出∠ACE和∠DEC互補(bǔ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=30°,OC為∠AOB內(nèi)部一條射線,點(diǎn)P為射線OC上一點(diǎn),OP=4,點(diǎn)M、N分別為OA、OB邊上動(dòng)點(diǎn),則△MNP周長的最小值為( )
A. 2 B. 4 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,小明在自家樓頂上的點(diǎn)A處測量建在與小明家樓房同一水平線上鄰居的電梯的高度,測得電梯樓頂部B處的仰角為45°,底部C處的俯角為26°,已知小明家樓房的高度AD=15米,求電梯樓的高度BC(結(jié)果精確到0.1米)(參考數(shù)據(jù):sin26°≈0.44,cos26°≈0.90,tan26°≈0.49)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車從A城出發(fā)沿一條筆直公路勻速行駛至B城.在整個(gè)行駛過程中,甲、乙兩車離開A城的距離(千米)與甲車行駛的時(shí)間t(小時(shí))之間的函數(shù)關(guān)系如圖所示.
(1)A,B兩城相距 千米,乙車比甲車早到 小時(shí);
(2)甲車出發(fā)多長時(shí)間與乙車相遇?
(3)若兩車相距不超過20千米時(shí)可以通過無線電相互通話,則兩車都在行駛過程中可以通過無線電通話的時(shí)間有多長?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:關(guān)于x的方程x2+2mx+m2﹣1=0
(1)不解方程,判別方程根的情況;
(2)若方程有一個(gè)根為3,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線C1:y=x2+bx+c經(jīng)過原點(diǎn),與x軸的另一個(gè)交點(diǎn)為(2,0),將拋物線C1向右平移m(m>0)個(gè)單位得到拋物線C2 , C2交x軸于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),交y軸于點(diǎn)C.
(1)求拋物線C1的解析式及頂點(diǎn)坐標(biāo);
(2)以AC為斜邊向上作等腰直角三角形ACD,當(dāng)點(diǎn)D落在拋物線C2的對稱軸上時(shí),求拋物線C2的解析式;
(3)若拋物線C2的對稱軸存在點(diǎn)P,使△ PAC為等邊三角形,求m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com