【題目】某中學新建了一棟四層的教學樓,每層樓有10間教室,進出這棟教學樓共有4個門,其中兩個正門大小相同,兩個側門大小也相同.安全檢查中,對4個門進行了測試,當同時開啟一個正門和兩個側門時,2分鐘內可以通過560名學生;當同時開啟一個正門和一個側門時,4分鐘內可以通過800名學生.
(1)求平均每分鐘一個正門和一個側門各可以通過多少名學生?
(2)檢查中發(fā)現(xiàn),出現(xiàn)緊急情況時,因學生擁擠,出門的效率將降低20%,安全檢查規(guī)定:在緊急情況下全樓的學生應在5分鐘內通過這4個門安全撤離,假設這棟教學大樓每間教室最多有45名學生,問:該教學樓建造的這4個門是否符合安全規(guī)定?請說明理由.
【答案】
(1)解:設一個正門平均每分鐘通過x名學生,一個側門平均每分鐘通過y名學生,由題意,得
,解得: .
答:一個正門平均每分鐘通過120名學生,一個側門平均每分鐘通過80名學生
(2)解:由題意,得
共有學生:45×10×4=1800,
1800學生通過的時間為:1800÷(120+80)×0.8×2= 分鐘.
∵5< ,
∴該教學樓建造的這4個門不符合安全規(guī)定
【解析】(1)設一個正門平均每分鐘通過x名學生,一個側門平均每分鐘通過y名學生,根據(jù)正門通過的學生數(shù)+側門通過的學生數(shù)=通過的總人數(shù)建立方程求出其解即可;(2)先計算出總人數(shù),在由總人數(shù)÷單位時間內通過的人數(shù)就可以求出時間,再與5分鐘進行比較久可以得出結論.
科目:初中數(shù)學 來源: 題型:
【題目】A、B兩地相距70千米,甲從A地出發(fā),每小時行15千米,乙從B地出發(fā),每小時行20千米.
(1)若兩人同時出發(fā),相向而行,則經(jīng)過幾小時兩人相遇?
(2)若甲在前,乙在后,兩人同時同向而行,則幾小時后乙超過甲10千米?
(3)若兩人同時出發(fā),相向而行,則幾小時后兩人相距10千米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察下面的變形規(guī)律:
;;;….
解答下面的問題:
(1)仿照上面的格式請寫出= ;
(2)若n為正整數(shù),請你猜想= ;
(3)基礎應用:計算:.
(4)拓展應用1:解方程: =2016
(5)拓展應用2:計算:.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在邊長為1個單位長度的小正方形組成的網(wǎng)格中,建立如圖所示的平面直角坐標系△ABC是格點三角形(頂點在網(wǎng)格線的交點上)
(1)先作△ABC關于原點O成中心對稱的△A1B1C1,再把△A1B1C1向上平移4個單位長度得到△A2B2C2;
(2)△A2B2C2與△ABC是否關于某點成中心對稱?若是,直接寫出對稱中心的坐標;若不是,請說明理由.
【答案】(1)畫圖見解析;(2)(0,2).
【解析】
(1)根據(jù)中心對稱和平移性質分別作出變換后三頂點的對應點,再順次連接可得;
(2)根據(jù)中心對稱的概念即可判斷.
(1)如圖所示,△A1B1C1和△A2B2C2即為所求;
(2)由圖可知,△A2B2C2與△ABC關于點(0,2)成中心對稱.
點睛:本題考查了中心對稱作圖和平移作圖,熟練掌握中心對稱的性質和平移的性質是解答本題的關鍵. 中心對稱的性質:①關于中心對稱的兩個圖形能夠完全重合;②關于中心對稱的兩個圖形,對應點的連線都經(jīng)過對稱中心,并且被對稱中心平分.
【題型】解答題
【結束】
22
【題目】如圖,在矩形ABCD中,點E在AD上,且EC平分∠BED.
(1)△BEC是否為等腰三角形?證明你的結論.
(2)已知AB=1,∠ABE=45°,求BC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】《算法統(tǒng)宗》是中國古代數(shù)學名著,作者是我國明代數(shù)學家程大位.在《算法統(tǒng)宗》中記載:“以繩測井,若將繩三折測之,繩多4尺,若將繩四折測之,繩多1尺,繩長井深各幾何?”
譯文:“用繩子測水井深度,如果將繩子折成三等份,井外余繩4尺;如果將繩子折成四等份,井外余繩1尺.問繩長、井深各是多少尺?”
設井深為x尺,根據(jù)題意列方程,正確的是( 。
A. 3(x+4)=4(x+1) B. 3x+4=4x+1
C. 3(x﹣4)=4(x﹣1) D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標中,點O為坐標原點,直線y=﹣x+4與x軸交于點A,過點A的拋物線y=ax2+bx與直線y=﹣x+4交于另一點B,且點B的橫坐標為1.
(1)求a,b的值;
(2)點P是線段AB上一動點(點P不與點A、B重合),過點P作PM//OB交第一象限內的拋物線于點M,過點M作MC⊥x軸于點C,交AB于點N,過點P作PF⊥MC于點F,設PF的長為t,MN的長為d,求d與t之間的函數(shù)關系式(不要求寫出自變量t的取值范圍);
(3)在(2)的條件下,當S△ACN=S△PMN時,連接ON,點Q在線段BP上,過點Q作QR//MN交ON于點R,連接MQ、BR,當∠MQR﹣∠BRN=45°時,求點R的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某種型號油電混合動力汽車,從A地到B地燃油行駛純燃油費用76元,從A地到B地用電行駛純電費用26元,已知每行駛1千米,純燃油費用比純用電費用多0.5元.
(1)求每行駛1千米純用電的費用;
(2)若要使從A地到B地油電混合行駛所需的油、電費用合計不超過39元,則至少用電行駛多少千米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某大型企業(yè)為了保護環(huán)境,準備購買A、B兩種型號的污水處理設備共8臺,用于同時治理不同成分的污水,若購買A型2臺、B型3臺需54萬,購買A型4臺、B型2臺需68萬元.
(1)求出A型、B型污水處理設備的單價;
(2)經(jīng)核實,一臺A型設備一個月可處理污水220噸,一臺B型設備一個月可處理污水190噸,如果該企業(yè)每月的污水處理量不低于1565噸,請你為該企業(yè)設計一種最省錢的購買方案.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com