【題目】解答
(1)閱讀理解:
我們把滿足某種條件的所有點(diǎn)所組成的圖形,叫做符合這個(gè)條件的點(diǎn)的軌跡.
例如:角的平分線是到角的兩邊距離相等的點(diǎn)的軌跡.
問題:如圖1,已知EF為△ABC的中位線,M是邊BC上一動(dòng)點(diǎn),連接AM交EF于點(diǎn)P,那么動(dòng)點(diǎn)P為線段AM中點(diǎn).
理由:∵線段EF為△ABC的中位線,∴EF∥BC,
由平行線分線段成比例得:動(dòng)點(diǎn)P為線段AM中點(diǎn).
由此你得到動(dòng)點(diǎn)P的運(yùn)動(dòng)軌跡是:
(2)知識(shí)應(yīng)用:
如圖2,已知EF為等邊△ABC邊AB、AC上的動(dòng)點(diǎn),連結(jié)EF;若AF=BE,且等邊△ABC的邊長為8,求線段EF中點(diǎn)Q的運(yùn)動(dòng)軌跡的長.
(3)拓展提高:
如圖3,P為線段AB上一動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)A、B重合),在線段AB的同側(cè)分別作等邊△APC和等邊△PBD,連結(jié)AD、BC,交點(diǎn)為Q.

①求∠AQB的度數(shù);
②若AB=6,求動(dòng)點(diǎn)Q運(yùn)動(dòng)軌跡的長.

【答案】
(1)線段EF
(2)

解:如圖1中,作△ABC的中位線MN,作EG∥AC交NM的延長線于G,EF與MN交于點(diǎn)Q′

∵△ABC是等邊三角形,MN是中位線,

∴AM=BM=AN=CN,

∵AF=BE,

∴EM=FN,

∵M(jìn)N∥BC,

∴∠AMN=∠B=∠GME=60°,

∵∠A=∠GEM=60°,

∴△GEM是等邊三角形,

∴EM=EG=FN,

在△GQ′E和△NQ′F中,

,

∴△GQ′E≌△NQ′F,

∴EQ′=FQ′,

∵EQ=QF,

′點(diǎn)Q、Q′重合,

∴點(diǎn)Q在線段MN上,

∴段EF中點(diǎn)Q的運(yùn)動(dòng)軌跡是線段MN,

MN= BC= ×8=4.

∴線段EF中點(diǎn)Q的運(yùn)動(dòng)軌跡的長為4.


(3)

解:

①如圖2中,

∵△APC,△PBD都是等邊三角形,

∴AP=PC,PD=PB,∠APC=∠DPB=60°,

∴∠APD=∠CPB,

在△APD和△CPB中,

∴△APD≌△CPB,

∴∠ADP=∠CBP,設(shè)BC與PD交于點(diǎn)G,

∵∠QGD=∠PGB,

∴∠DQG=∠BPG=60°,

∴∠AQB=180°﹣∠DQG=120°

②由(1)可知點(diǎn)P的運(yùn)動(dòng)軌跡是 ,設(shè)弧AB所在圓的圓心為O,Z 圓上任意取一點(diǎn)M,連接AM,BM,

則∠M=60°,

∴∠AOB=2∠M=120°,作OH⊥AB于H,則AH=BH=3,OH= ,OB=2

∴弧AB的長= = π.

∴動(dòng)點(diǎn)Q運(yùn)動(dòng)軌跡的長 π


【解析】閱讀理解:根據(jù)軌跡的定義可知,動(dòng)點(diǎn)P的運(yùn)動(dòng)軌跡是線段EF.
知識(shí)應(yīng)用:如圖1中,作△ABC的中位線MN,作EG∥AC交NM的延長線于G,EF與MN交于點(diǎn)Q′,△GQ′E≌△NQ′F,推出Q、Q′重合即可解決問題.
拓展提高:如圖2中,(1)只要證明△APD≌△CPB,推出∠DQG=∠BPG=60°結(jié)論解決問題.(2)由(1)可知點(diǎn)P的運(yùn)動(dòng)軌跡是 ,設(shè)弧AB所在圓的圓心為O,Z 圓上任意取一點(diǎn)M,連接AM,BM,則∠M=60°,作OH⊥AB于H,則AH=BH=3,OH= ,OB=2 ,利用弧長公式即可解決.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解弧長計(jì)算公式的相關(guān)知識(shí),掌握若設(shè)⊙O半徑為R,n°的圓心角所對(duì)的弧長為l,則l=nπr/180;注意:在應(yīng)用弧長公式進(jìn)行計(jì)算時(shí),要注意公式中n的意義.n表示1°圓心角的倍數(shù),它是不帶單位的.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】DEF中,DE=DF,點(diǎn)BEF邊上,且∠EBD=60°,C是射線BD上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)B重合,且BC≠BE),在射線BE上截取BA=BC,連接AC.

(1)當(dāng)點(diǎn)C在線段BD上時(shí),

①若點(diǎn)C與點(diǎn)D重合,請(qǐng)根據(jù)題意補(bǔ)全圖1,并直接寫出線段AEBF的數(shù)量關(guān)系為________;

②如圖2,若點(diǎn)C不與點(diǎn)D重合,請(qǐng)證明AE=BF+CD;

(2)當(dāng)點(diǎn)C在線段BD的延長線上時(shí),用等式表示線段AE,BF,CD之間的數(shù)量關(guān)系,不用證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y1=﹣ x+1與x軸交于點(diǎn)A,與直線y2=﹣ x交于點(diǎn)B.

(1)求△AOB的面積;
(2)求y1>y2時(shí)x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù) y=kx+b 的圖象經(jīng)過點(diǎn)(﹣1,1)和點(diǎn)(1,﹣5)

(1)求一次函數(shù)的表達(dá)式;

(2)此函數(shù)與 x 軸的交點(diǎn)是 A,與 y 軸的交點(diǎn)是 B,求△AOB 的面積;

(3)求此函數(shù)與直線 y=2x+4 的交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某縣為了落實(shí)中央的強(qiáng)基惠民工程,計(jì)劃將某村的居民自來水管道進(jìn)行改造.該工程若由甲隊(duì)單獨(dú)施工恰好在規(guī)定時(shí)間內(nèi)完成;若乙隊(duì)單獨(dú)施工則完成工程所需天數(shù)是規(guī)定天數(shù)的1.5倍.如果由甲、乙隊(duì)先合做15那么余下的工程由甲隊(duì)單獨(dú)完成還需5

1)這項(xiàng)工程的規(guī)定時(shí)間是多少天?

2)已知甲隊(duì)每天的施工費(fèi)用為6500乙隊(duì)每天的施工費(fèi)用為3500元.為了縮短工期以減少對(duì)居民用水的影響,工程指揮部最終決定該工程由甲、乙隊(duì)合做來完成.則該工程施工費(fèi)用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校在八年級(jí)開設(shè)了數(shù)學(xué)史、詩詞賞析、陶藝三門校本課程,若小波和小睿兩名同學(xué)每人隨機(jī)選擇其中一門課程,則小波和小睿選到同一課程的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在邊長為2的正方形ABCD中,點(diǎn)P、Q分別是邊AB、BC上的兩個(gè)動(dòng)點(diǎn)(與點(diǎn)A、B、C不重合),且始終保持BP=BQ,AQ⊥QE,QE交正方形外角平分線CE于點(diǎn)E,AE交CD于點(diǎn)F,連結(jié)PQ.

(1)求證:△APQ≌△QCE;

(2)求∠QAE的度數(shù);

(3)設(shè)BQ=x,當(dāng)x為何值時(shí),QF∥CE,并求出此時(shí)△AQF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線y=ax2+(a+3)x+3(a≠0)與x軸交于點(diǎn)A(4,0),與y軸交于點(diǎn)B,在x軸上有一動(dòng)點(diǎn)E(m,0)(0<m<4),過點(diǎn)E作x軸的垂線交直線AB于點(diǎn)N,交拋物線于點(diǎn)P,過點(diǎn)P作PM⊥AB于點(diǎn)M.

(1)求a的值和直線AB的函數(shù)表達(dá)式;
(2)設(shè)△PMN的周長為C1 , △AEN的周長為C2 , 若 = ,求m的值;
(3)如圖2,在(2)條件下,將線段OE繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)得到OE′,旋轉(zhuǎn)角為α(0°<α<90°),連接E′A、E′B,求E′A+ E′B的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小剛家、公交車站、學(xué)校在一條筆直的公路旁(小剛家、學(xué)校到這條公路的距離忽略不計(jì))一天,小剛從家出發(fā)去上學(xué),沿這條公路步行到公交站恰好乘上一輛公交車,公交車沿這條公路勻速行駛,小剛下車時(shí)發(fā)現(xiàn)還有4分鐘上課,于是他沿著這條公路跑步趕到學(xué)校(上、下車時(shí)間忽略不計(jì)),小剛與學(xué)校的距離s(單位:米)與他所用的時(shí)間t(單位:分鐘)之間的函數(shù)關(guān)系如圖所示.已知小剛從家出發(fā)7分鐘時(shí)與家的距離是1200米,從上公交車到他到達(dá)學(xué)校公用10分鐘.下列說法:
①公交車的速度為400米/分鐘;
②小剛從家出發(fā)5分鐘時(shí)乘上公交車;
③小剛下公交車后跑向?qū)W校的速度是100米/分鐘;
④小剛上課遲到了1分鐘.
其中正確的個(gè)數(shù)是(

A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案