【題目】DEF中,DE=DF,點(diǎn)BEF邊上,且∠EBD=60°,C是射線(xiàn)BD上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)B重合,且BC≠BE),在射線(xiàn)BE上截取BA=BC,連接AC.

(1)當(dāng)點(diǎn)C在線(xiàn)段BD上時(shí),

①若點(diǎn)C與點(diǎn)D重合,請(qǐng)根據(jù)題意補(bǔ)全圖1,并直接寫(xiě)出線(xiàn)段AEBF的數(shù)量關(guān)系為________;

②如圖2,若點(diǎn)C不與點(diǎn)D重合,請(qǐng)證明AE=BF+CD;

(2)當(dāng)點(diǎn)C在線(xiàn)段BD的延長(zhǎng)線(xiàn)上時(shí),用等式表示線(xiàn)段AE,BF,CD之間的數(shù)量關(guān)系,不用證明.

【答案】(1)①圖見(jiàn)解析;②證明見(jiàn)解析;(2)AE=BF-CD(或AE=CD-BF.)

【解析】

試題

(1)①按要求補(bǔ)全圖形如圖3,由已知條件易證△ABD是等邊三角形,再證△DBE≌△DAF,可得BE=AF,從而可得AE=BF;②如圖2,BE上截取BG=BD,連接DG,易證△GBD、△ABC都是等邊三角形,再證△DGE≌△DBF即可得到所求結(jié)論

(2)如圖5、圖6,當(dāng)點(diǎn)CBD延長(zhǎng)線(xiàn)上時(shí),需分點(diǎn)A在線(xiàn)段BE上和線(xiàn)段BE的延長(zhǎng)線(xiàn)上兩種情況分析討論,由已知條件易證△CAB和△DGB都是等邊三角形,由此易得DC=AG;再證△DGE≌△DBF可得DG=BF,即可得到DC、AE、BF間的數(shù)量關(guān)系.

(1)①補(bǔ)全圖形如圖3所示:

∵BA=BC,∠EBD=60°,

∴△ABD為等邊三角形,

∴∠DAB=∠DBA=60°,DB=DA,

∵DE=DF,

∴∠E=∠F,

∴△DBE≌△DAF,

∴BE=AF,

∴BE-AB=AF-AB,AE=BF;

②如圖4,在BE上截取BG=BD,連接DG

∵∠EBD=60°,BG=BD,

∴△GBD是等邊三角形.

同理,△ABC也是等邊三角形.

AG=CD.DE=DF,

∴∠E=F.

又∵∠DGB=DBG=60°,

∴∠DGE=DBF=120°.

∴△DGE≌△DBF,

GE=BF,

AE=BF+CD.

(2)如圖5、圖6,當(dāng)點(diǎn)CBD延長(zhǎng)線(xiàn)上時(shí),需分點(diǎn)A在線(xiàn)段BE上和線(xiàn)段BE的延長(zhǎng)線(xiàn)上兩種情況分析討論,

當(dāng)點(diǎn)A在線(xiàn)段BE上時(shí),在線(xiàn)段BE上截取BG=BD,連接DG,

∵∠DBE=60°,BA=BC,BG=BD,

∴△CBA、△DBG都是等邊三角形,BA-BG=BC-BD,

∴∠DGB=∠DBG=60°,AG=CD,

∴∠DGE=∠DBF,

∵DE=DF,

∴∠E=∠F,

∴△DGE≌△DBF,

∴GE=BF,

∴AE=GE-AG=BF-CD;

同理如圖6,可得AE=CD-BF;

綜上所述當(dāng)點(diǎn)C在線(xiàn)段BD的延長(zhǎng)線(xiàn)上時(shí),AE=BF-CD(或AE=CD-BF).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,P是拋物線(xiàn)y=x2﹣4x+3上的一點(diǎn),以點(diǎn)P為圓心、1個(gè)單位長(zhǎng)度為半徑作⊙P,當(dāng)⊙P與直線(xiàn)y=0相切時(shí),點(diǎn)P的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知非RtABC中,∠A=45°,高BDCE所在的直線(xiàn)交于點(diǎn)H,畫(huà)出圖形并求出∠BHC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校舉行全體學(xué)生“漢字聽(tīng)寫(xiě)”比賽,每位學(xué)生聽(tīng)寫(xiě)漢字39個(gè).隨機(jī)抽取了部分學(xué)生的聽(tīng)寫(xiě)結(jié)果,繪制成如下的統(tǒng)計(jì)圖表(表1,圖8.1,圖8.2).

根據(jù)以上信息完成下列問(wèn)題:

(1)統(tǒng)計(jì)表中的m= ,n= ;

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)扇形統(tǒng)計(jì)圖中“E”類(lèi)所對(duì)應(yīng)的圓心角是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,ABDE,ACDFAC=DF下列條件中,不能判斷ABC≌△DEF的是( 。

A. AB=DE B. B=∠E C. EF=BC D. EFBC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算: +2sin60°﹣|﹣ |﹣(﹣2015)0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的箱子里,裝有黃、白、黑各一個(gè)球,它們除了顏色之外沒(méi)有其他區(qū)別.
(1)隨機(jī)從箱子里取出1個(gè)球,則取出黃球的概率是多少?
(2)隨機(jī)從箱子里取出1個(gè)球,放回?cái)噭蛟偃〉诙䝼(gè)球,請(qǐng)你用畫(huà)樹(shù)狀圖或列表的方法表示出所有可能出現(xiàn)的結(jié)果,并求兩次取出的都是白色球的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn).直線(xiàn)y=kx+b與拋物線(xiàn)y=mx2 x+n同時(shí)經(jīng)過(guò)A(0,3)、B(4,0).

(1)求m,n的值.
(2)點(diǎn)M是二次函數(shù)圖象上一點(diǎn),(點(diǎn)M在AB下方),過(guò)M作MN⊥x軸,與AB交于點(diǎn)N,與x軸交于點(diǎn)Q.求MN的最大值.
(3)在(2)的條件下,是否存在點(diǎn)N,使△AOB和△NOQ相似?若存在,求出N點(diǎn)坐標(biāo),不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解答
(1)閱讀理解:
我們把滿(mǎn)足某種條件的所有點(diǎn)所組成的圖形,叫做符合這個(gè)條件的點(diǎn)的軌跡.
例如:角的平分線(xiàn)是到角的兩邊距離相等的點(diǎn)的軌跡.
問(wèn)題:如圖1,已知EF為△ABC的中位線(xiàn),M是邊BC上一動(dòng)點(diǎn),連接AM交EF于點(diǎn)P,那么動(dòng)點(diǎn)P為線(xiàn)段AM中點(diǎn).
理由:∵線(xiàn)段EF為△ABC的中位線(xiàn),∴EF∥BC,
由平行線(xiàn)分線(xiàn)段成比例得:動(dòng)點(diǎn)P為線(xiàn)段AM中點(diǎn).
由此你得到動(dòng)點(diǎn)P的運(yùn)動(dòng)軌跡是:
(2)知識(shí)應(yīng)用:
如圖2,已知EF為等邊△ABC邊AB、AC上的動(dòng)點(diǎn),連結(jié)EF;若AF=BE,且等邊△ABC的邊長(zhǎng)為8,求線(xiàn)段EF中點(diǎn)Q的運(yùn)動(dòng)軌跡的長(zhǎng).
(3)拓展提高:
如圖3,P為線(xiàn)段AB上一動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)A、B重合),在線(xiàn)段AB的同側(cè)分別作等邊△APC和等邊△PBD,連結(jié)AD、BC,交點(diǎn)為Q.

①求∠AQB的度數(shù);
②若AB=6,求動(dòng)點(diǎn)Q運(yùn)動(dòng)軌跡的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案