【題目】在一個不透明的盒子里裝有黑、白兩種顏色的球共30只,這些球除顏色外其余完全相同.?dāng)噭蚝,小明做摸球(qū)嶒,他從盒子里隨機(jī)摸出一只球記下顏色后,再把球放回盒子中,不斷重復(fù)上述過程,下表是實驗中的一組統(tǒng)計數(shù)據(jù).
(1)若從盒子里隨機(jī)摸出一只球,則摸到白球的概率的估計值為 (精確到0.1)
(2)盒子里白色的球有 只;
(3)若將m個完全一樣的白球放入這個盒子里并搖勻,隨機(jī)摸出1個球是白球的概率是0.8,求m的值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有四根長度分別為3,4,5,x(x為正整數(shù))的木棒,從中任取三根,首尾順次相接都能組成一個三角形則組成的三角形的周長( )
A.最小值是11B.最小值是12C.最大值是14D.最大值是15
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC,△ADE均為等腰直角三角形,∠BAC=∠DAE=90°,將△ADE繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),連接DC,點(diǎn)M,P,N分別為DE,DC,BC的中點(diǎn),若AD=3,AB=7,則線段MN的取值范圍是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】深圳市民中心廣場上有旗桿如圖①所示,某學(xué)校興趣小組測量了該旗桿的高度,如圖②,某一時刻,旗桿AB的影子一部分落在平臺上,另一部分落在斜坡上,測得落在平臺上的影長BC為16米,落在斜坡上的影長CD為8米,AB⊥BC;同一時刻,太陽光線與水平面的夾角為45°.1米的標(biāo)桿EF豎立在斜坡上的影長FG為2米,求旗桿的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在菱形ABCD中,G是射線BC上的一動點(diǎn)(不與點(diǎn)B,C重合),連接AG,點(diǎn)E、F是AG上兩點(diǎn),連接DE,BF,且知∠ABF=∠AGB,∠AED=∠ABC.
(1)若點(diǎn)G在邊BC上,如圖1,則:
①△ADE與△BAF______;(填“全等”或“不全等”或“不一定全等”)
②線段DE、BF、EF之間的數(shù)量關(guān)系是______;
(2)若點(diǎn)G在邊BC的延長線上,如圖2,那么上面(1)②探究的結(jié)論還成立嗎?如果成立,請給出證明;如果不成立,請說明這三條線段之間又怎樣的數(shù)量關(guān)系,并給出你的證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)B的坐標(biāo)為(1,0)
(1)在圖l中畫出△ABC關(guān)于x軸對稱的△A1B1C1;
(2)在圖2中,以點(diǎn)O為位似中心,將△ABC放大,使放大后的△A2B2C2與△ABC的對應(yīng)邊的比為2:1(畫出一種即可). 直接寫出點(diǎn)A的對應(yīng)點(diǎn)A2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑 ,點(diǎn)C在⊙O上,過點(diǎn)O作交BC于點(diǎn)E,交⊙O于點(diǎn)D,CD∥AB.
(1)求證:E為OD的中點(diǎn);
(2)若CB=6,求四邊形CAOD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)P(1,5)、Q(m,n)在反比例函數(shù)的圖象上,過點(diǎn)P分別作x軸、y軸的垂線,垂足分別為A、B,點(diǎn)Q為圖象上的動點(diǎn),過點(diǎn)Q分別作x軸、y軸的垂線,垂足分別為C、D,兩垂線相交于點(diǎn)E,隨著m的增大,四邊形OCQD與四邊形OAPB不重合的面積變化為( )
A. 先增大后減小 B. 先減小后增大 C. 先減小后增大再減小 D. 先增大后減小再增大
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,E為CD的中點(diǎn),連接AE、BE,BE⊥AE,延長AE交BC的延長線于點(diǎn)F.
求證:(1)FC=AD;(2)AB=BC+AD.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com