【題目】如圖,方格紙中的每個(gè)小方格都是邊長為1個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)B的坐標(biāo)為(1,0

1)在圖l中畫出ABC關(guān)于x軸對(duì)稱的A1B1C1;

2)在圖2中,以點(diǎn)O為位似中心,將ABC放大,使放大后的A2B2C2ABC的對(duì)應(yīng)邊的比為21(畫出一種即可). 直接寫出點(diǎn)A的對(duì)應(yīng)點(diǎn)A2的坐標(biāo).

【答案】1)作圖見解析;

2作圖見解析;此時(shí)點(diǎn)A的對(duì)應(yīng)點(diǎn)A2的坐標(biāo)是(-4,-4)或(4,4

【解析】試題分析:(1)分別作出點(diǎn)A、B、C關(guān)于x軸對(duì)稱的點(diǎn),然后順次連接即可;

(2)延長OBB2,使OB2=2OB,按同樣的方法得到點(diǎn)A2、C2,然后順次連接,寫出A2的坐標(biāo)即可.(也可以反向延長).

試題解析:(1)如圖所示;

(2)如圖所示,A2的坐標(biāo)是(-4,-4)或(4,4).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖像與反比例函數(shù)在第一象限內(nèi)的圖像交于兩點(diǎn).

1)求反比例函數(shù)的表達(dá)式;

2)在第一象限內(nèi),當(dāng)一次函數(shù)的值大于反比例函數(shù)的值時(shí),寫出自變量的取值范圍;

3)求面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是某同學(xué)對(duì)多項(xiàng)式(x24x+2)(x24x+6+4進(jìn)行因式分解的過程.

解:設(shè)x24x=y

原式=y+2)(y+6+4 (第一步)

= y2+8y+16 (第二步)

=y+42 (第三步)

=x24x+42 (第四步)

回答下列問題:

1)該同學(xué)第二步到第三步運(yùn)用了因式分解的_______

A.提取公因式 B.平方差公式 C.兩數(shù)和的完全平方公式 D.兩數(shù)差的完全平方公式

2)該同學(xué)因式分解的結(jié)果是否徹底?________.(填“徹底”或“不徹底”)

若不徹底,請(qǐng)直接寫出因式分解的最后結(jié)果_________

3)請(qǐng)你模仿以上方法嘗試對(duì)多項(xiàng)式(x22x)(x22x+2+1進(jìn)行因式分解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知矩形ABCD的三個(gè)頂點(diǎn)B1,0),C3,0),D3,4).以A為頂點(diǎn)的拋物線y=ax2+bx+c過點(diǎn)C.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿線段AB向點(diǎn)B運(yùn)動(dòng).同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿線段CD向點(diǎn)D運(yùn)動(dòng).點(diǎn)P,Q的運(yùn)動(dòng)速度均為每秒1個(gè)單位.運(yùn)動(dòng)時(shí)間為t秒.過點(diǎn)PPE⊥ABAC于點(diǎn)E

1)直接寫出點(diǎn)A的坐標(biāo),并求出拋物線的解析式;

2)過點(diǎn)EEF⊥ADF,交拋物線于點(diǎn)G,當(dāng)t為何值時(shí),△ACG的面積最大?最大值為多少?

3)在動(dòng)點(diǎn)P,Q運(yùn)動(dòng)的過程中,當(dāng)t為何值時(shí),在矩形ABCD內(nèi)(包括邊界)存在點(diǎn)H,使以CQ,EH為頂點(diǎn)的四邊形為菱形?請(qǐng)直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為落實(shí)“綠水青山就是金山銀山”的發(fā)展理念,某縣政府部門決定,招標(biāo)一工程隊(duì)負(fù)責(zé)完成一座水庫的土方施工任務(wù).該工程隊(duì)有A,B兩種型號(hào)的挖掘機(jī),已知1臺(tái)A型和2臺(tái)B型挖掘機(jī)同時(shí)施工1小時(shí)共挖土80立方米,2臺(tái)A型和3臺(tái)B型挖掘機(jī)同時(shí)施工1小時(shí)共挖土140立方米.每臺(tái)A型挖掘機(jī)一個(gè)小時(shí)的施工費(fèi)用是350元,每臺(tái)B型挖掘機(jī)一個(gè)小時(shí)的施工費(fèi)用是200元.

1)分別求每臺(tái)A型,B型挖掘機(jī)一小時(shí)各挖土多少立方米?

2)若A型和B型挖掘機(jī)共10臺(tái)同時(shí)施工4小時(shí),至少完成1360立方米的挖土量,且總費(fèi)用不超過14000元.問施工時(shí)有哪幾種調(diào)配方案?且指出哪種調(diào)配方案的施工費(fèi)用最低,最低費(fèi)用多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將線段AB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到線段A′B′,那么A(﹣2,5)的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)為做好“家電下鄉(xiāng)”的惠民服務(wù),決定從廠家購進(jìn)甲、乙、丙三種不同型號(hào)的電視機(jī)108臺(tái),其中甲種電視機(jī)的臺(tái)數(shù)是丙種的4倍,購進(jìn)三種電視機(jī)的總金額不超過147 000元,已知甲、乙、丙三種型號(hào)的電視機(jī)的出廠價(jià)格分別為1 000元/臺(tái),1 500元/臺(tái),2 000元/臺(tái).

(1)求該商場(chǎng)至少購買丙種電視機(jī)多少臺(tái)?

(2)若要求甲種電視機(jī)的臺(tái)數(shù)不超過乙種電視機(jī)的臺(tái)數(shù),問有哪些購買方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016山東省泰安市)某學(xué)校將為初一學(xué)生開設(shè)ABCDEF6門選修課,現(xiàn)選取若干學(xué)生進(jìn)行了我最喜歡的一門選修課調(diào)查,將調(diào)查結(jié)果繪制成如圖統(tǒng)計(jì)圖表(不完整)

根據(jù)圖表提供的信息,下列結(jié)論錯(cuò)誤的是( 。

A. 這次被調(diào)查的學(xué)生人數(shù)為400

B. 扇形統(tǒng)計(jì)圖中E部分扇形的圓心角為72°

C. 被調(diào)查的學(xué)生中喜歡選修課EF的人數(shù)分別為80,70

D. 喜歡選修課C的人數(shù)最少

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x22m+1x+mm+1=0,

(1)求證:方程總有兩個(gè)不相等的實(shí)數(shù)根;

(2)設(shè)方程的兩根分別為x1、x2,求的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案