【題目】已知:(x + 20 = 1,則(

A.x = 3B.x = 1C.x為任意實數(shù)D.x ≠- 2

【答案】D

【解析】

根據(jù)零指數(shù)冪的特點即可求解.

依題意得x + 2 ≠-0,

解得x ≠- 2

故選D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線經(jīng)過點A(﹣3,0),F(xiàn)(8,0),B(0,4)三點

(1)求拋物線解析式及對稱軸;
(2)若點D在線段FB上運動(不與F,B重合),過點D作DC⊥軸于點C(x,0),將△FCD沿CD向左翻折,點B對應點為點E,△CDE與△FBO重疊部分面積為S.
①試求出S與x之間的函數(shù)關系式,并寫出自變量取值范圍.
②是否存在這樣的點C,使得△BDE為直角三角形,若存在,求出C點坐標,若不存在,請說明理由;
(3)拋物線對稱軸上有一點M,平面內(nèi)有一點N,若以A,B,M,N四點組成的四邊形為菱形,求點N的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,拋物線,經(jīng)過A10)、B7,0)兩點,交y軸于D點,以AB為邊在x軸上方作等邊△ABC

1)求拋物線的解析式;

2)在x軸上方的拋物線上是否存在點M,是SABM=SABC?若存在,請求出點M的坐標;若不存在,請說明理由;

3)如圖2,E是線段AC上的動點,F是線段BC上的動點,AFBE相交于點P

①若CE=BF,試猜想AFBE的數(shù)量關系及∠APB的度數(shù),并說明理由;

②若AF=BE,當點EA運動到C時,請直接寫出點P經(jīng)過的路徑長(不需要寫過程).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明和媽媽玩游戲,小明每次從籃子中拿出8個球,媽媽就放回去3個,籃子中共有108個球.

1)第一次拿出后,籃子中剩下   個球.

2)小明要取多少次才能把球全部拿出來?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果 a+b+c0,且|a|>|b|>|c|.則下列式子中可能成立的是( )

A.c0,a0B.c0,b0

C.b0,c0D.b=0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩車從A城出發(fā)勻速行駛至B城.在整個行駛過程中,甲、乙兩車離開A城的距離y(千米)與甲車行駛的時間t(小時)之間的函數(shù)關系如圖所示.則下列結(jié)論:

①A,B兩城相距300千米;

②乙車比甲車晚出發(fā)1小時,卻早到1小時;

③乙車出發(fā)后2.5小時追上甲車;

④當甲、乙兩車相距50千米時,t=

其中正確的結(jié)論有(

A.1個 B.2個 C.3個 D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知線段AB,∠α,∠β,分別過A、B∠CAB=∠α,∠CBA=∠β.(不寫作法,保留作圖痕跡)

【答案】答案見解析

【解析】分析:根據(jù)作一個角等于已知角的方法,分別以A、B為頂點,作圖即可.

本題解析:

如圖所示:

型】解答
結(jié)束】
14

【題目】已知:線段、

求作:ABC,使 , ;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某興趣小組為了了解本校學生參加課外體育鍛煉情況,隨機抽取本校40名學生進行問卷調(diào)查,統(tǒng)計整理并繪制了如下兩幅尚不完整的統(tǒng)計圖:

根據(jù)以上信息解答下列問題:

1)課外體育鍛煉情況統(tǒng)計圖中,經(jīng)常參加所對應的圓心角的度數(shù)為 經(jīng)常參加課外體育鍛煉的學生最喜歡的一種項目中,喜歡足球的人數(shù)有 人,補全條形統(tǒng)計圖.

2)該校共有1200名學生,請估計全校學生中經(jīng)常參加課外體育鍛煉并喜歡的項目是乒乓球的人數(shù)有多少人?

3)若在乒乓球、籃球、足球、羽毛球項目中任選兩個項目成立興趣小組,請用列表法或畫樹狀圖的方法求恰好選中乒乓球籃球這兩個項目的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC中,B=C,AB=8厘米,BC=6厘米,點DAB的中點.如果點P在線段BC上以每秒2厘米的速度由B點向C點運動,同時,點Q在線段CA上以每秒a厘米的速度由C點向A點運動,設運動時間為t(秒)(0≤t≤3).

1)用的代數(shù)式表示PC的長度;

2)若點P、Q的運動速度相等,經(jīng)過1秒后,BPDCQP是否全等,請說明理由;

3)若點P、Q的運動速度不相等,當點Q的運動速度a為多少時,能夠使BPDCQP全等?

查看答案和解析>>

同步練習冊答案