已知:如圖,平面直角坐標系xOy中,正方形ABCD的邊長為4,它的頂點A在x軸的正半軸上運動,頂點D在y軸的正半軸上運動(點A,D都不與原點重合),頂點B,C都在第一象限,且對角線AC,BD相交于點P,連接OP.
(1)當OA=OD時,點D的坐標為
(0,2
2
(0,2
2
,∠POA=
45
45
°;
(2)當OA<OD時,求證:OP平分∠DOA;
(3)設點P到y(tǒng)軸的距離為d,則在點A,D運動的過程中,d的取值范圍是什么?
分析:(1)根據(jù)正方形的性質求出△ADP是等腰直角三角形,再判斷出△AOD是等腰直角三角形,再求出四邊形AODP是正方形,然后根據(jù)正方形的性質求出AP=DP=2
2
,寫出點P的坐標即可;
(2)過點P作PM⊥x軸于點M,PN⊥y軸于點N,根據(jù)正方形的對角線互相平分且相等可得PD=PA,再根據(jù)同角的余角相等求出∠1=∠2,然后利用“角角邊”證明△DPN和△APM全等,根據(jù)全等三角形對應邊相等可得PM=PN,然后利用到角的兩邊距離相等的點在角的平分線上證明即可;
(3)根據(jù)垂線段最短,A、O重合時,點P到y(tǒng)軸的距離最小,為正方形ABCD邊長的一半,OA=OD時點P到y(tǒng)軸的距離最大,為PD的長度,即可得解.
解答:(1)解:∵四邊形ABCD為正方形,
∴△ADP是等腰直角三角形,
又∵OA=OD,
∴△AOD是等腰直角三角形,
∴四邊形AODP是正方形,
∵正方形ABCD的邊長為4,
∴AC=BD=
42+42
=4
2
,
∴AP=DP=
1
2
×4
2
=2
2

∴點P的坐標為(0,2
2
),∠POA=45°;

(2)證明:如圖,過點P作PM⊥x軸于點M,PN⊥y軸于點N,
∵四邊形ABCD是正方形,
∴PD=PA,∠DPA=90°,
∵PM⊥x軸于點M,PN⊥y軸于點N,
∴∠PMO=∠PNO=∠PND=90°,
∵∠NOM=90°,
∴四邊形NOMP中,∠NPM=90°,
∴∠DPA=∠NPM,
∵∠1=∠DPA-∠NPA,∠2=∠NPM-∠NPA,
∴∠1=∠2,
∵在△DPN和△APM中,
∠PND=∠PMA
∠1=∠2
PD=PA

∴△DPN≌△APM(AAS),
∴PN=PM,
∴OP平分∠DOA;

(3)解:當A、O重合時,點P到y(tǒng)軸的距離最小,
d=
1
2
×4=2,
當OA=OD時,點P到y(tǒng)軸的距離最大,d=PD=2
2
,
∵點A,D都不與原點重合,
∴2<d≤2
2
點評:本題考查了正方形的性質,坐標與圖形的性質,全等三角形的判定與性質,角平分線的判定,(2)作輔助線構造出全等三角形是解題的關鍵,(2)根據(jù)垂線段最短判斷出最小與最大值的情況是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知:如圖,平面直角坐標系中,半圓的直徑AB在x軸上,圓心為D.半圓交y軸于點C,AC=2
5
,精英家教網BC=4
5

(1)證明:△AOC∽△ACB;
(2)求以AO、BO兩線段長為根的一元二次方程;
(3)求圖象經過A、B、C三點的二次函數(shù)的表達式;
(4)設此拋物線的頂點為E,連接EC,試判斷直線EC與⊙O的位置關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知,如圖:平面直角坐標系中,拋物線y=-x2+2x+c的圖象與x軸分別交于點A精英家教網、B,其中點B在點A的右側,拋物線圖象與y軸交于點C,且經過點D(2,3).
(1)求c值;
(2)求直線BC的解析式;
(3)動點M在線段CB上由點C向終點B運動(點M不與點C、B重合),以OM為邊在y軸右側做正方形OMNF.設M點運動速度為
2
個單位/秒,運動時間為t.求以O、M、N、B、F為頂點的五邊形面積與t的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖在平面直角坐標系xOy中,直線AB分別與x,y軸交于點B、A,與反比例函數(shù)的圖象分別交于點C、D,CE⊥x軸于點E,OA=3,OB=6,OE=2.
(1)求直線AB的解析式;
(2)求該反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,平面直角坐標系xOy中,直線y=kx+b(k≠0)與直線y=mx(m≠0)交于點A(-2,4).
(1)求直線y=mx(m≠0)的解析式;
(2)若直線y=kx+b(k≠0)與另一條直線y=2x交于點B,且點B的橫坐標為-4,求△ABO的面積.

查看答案和解析>>

同步練習冊答案