如圖,AB是⊙0的直徑,C是⊙0上的一點,直線MN經(jīng)過點C,過點A作直線MN的垂線,垂足為點D,且∠BAC=∠DAC.
(1)猜想直線MN與⊙0的位置關(guān)系,并說明理由;
(2)若CD=6,cos=∠ACD=,求⊙0的半徑.
考點:
切線的判定;解直角三角形.
分析:
(1)連接OC,推出AD∥OC,推出OC⊥MN,根據(jù)切線的判定推出即可;
(2)求出AD、AB長,證△ADC∽△ACB,得出比例式,代入求出AB長即可.
解答:
解:(1)直線MN與⊙0的位置關(guān)系是相切,
理由是:連接OC,
∵OA=OC,
∴∠OAC=∠OCA,
∵∠CAB=∠DAC,
∴∠DAC=∠OCA,
∴OC∥AD,
∵AD⊥MN,
∴OC⊥MN,
∵OC為半徑,
∴MN是⊙O切線;
(2)∵CD=6,cos∠ACD==,
∴AC=10,由勾股定理得:AD=8,
∵AB是⊙O直徑,AD⊥MN,
∴∠ACB=∠ADC=90°,
∵∠DAC=∠BAC,
∴△ADC∽△ACB,
∴=,
∴=,
∴AB=12.5,
∴⊙O半徑是×12.5=6.25.
點評:
本題考查了切線的判定,等腰三角形的判定和性質(zhì),平行線性質(zhì),相似三角形的性質(zhì)和判定的應(yīng)用,主要考查學(xué)生運用定理進行推理和計算的能力.
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:初中數(shù)學(xué)解題思路與方法 題型:047
已知如圖,AB是半圓直經(jīng),△ACD內(nèi)接于半⊙O,CE⊥AB于E,延長AD交EC的延長線于F,求證:AC·CD=AD·FC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:單選題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com