【題目】如圖,拋物線(xiàn) 與x軸的負(fù)半軸交于點(diǎn)A,與y軸交于點(diǎn)B,連結(jié)AB.點(diǎn)C 在拋物線(xiàn)上,直線(xiàn)AC與y軸交于點(diǎn)D.
(1)求c的值及直線(xiàn)AC的函數(shù)表達(dá)式;
(2)點(diǎn)P在x軸的正半軸上,點(diǎn)Q在y軸正半軸上,連結(jié)PQ與直線(xiàn)AC交于點(diǎn)M,連結(jié)MO并延長(zhǎng)交AB于點(diǎn)N,若M為PQ的中點(diǎn).
①求證:△APM∽△AON;
②設(shè)點(diǎn)M的橫坐標(biāo)為m , 求AN的長(zhǎng)(用含m的代數(shù)式表示).
【答案】
(1)
解:把點(diǎn)C(6,)代入拋物線(xiàn)得:=9++c.
解得c=-3.
當(dāng)y=0時(shí),x2+x-3=0.
解得:x1=-4,x2=3.
∴A(-4,0).
設(shè)直線(xiàn)AC的函數(shù)表達(dá)式為:y=kx+b(k≠0).
把A(-4,0),C(6, )代入得:
解得:
∴直線(xiàn)AC的函數(shù)表達(dá)式為:y=x+3.
(2)
①證明:∵在Rt△AOB中,tan∠OAB==.
在Rt△AOB中,tan∠OAD==.
∴∠OAB=∠OAD.
∵在Rt△POQ中,M為PQ中點(diǎn).
∴OM=MP.
∴∠MOP=∠MPO.
又 ∵∠MOP=∠AON.
∴∠APM=∠AON.
∴△APM∽△AON.
②解:如下圖,過(guò)點(diǎn)M作ME⊥x軸于點(diǎn)E.
∵OM=MP.
∴OE=EP.
又∵點(diǎn)M的橫坐標(biāo)為m.
∴AE=m+4,AP=2m+4.
∵tan∠OAD=.
∴cos∠EAM=cos∠OAD=.
∴AM=AE=.
∵△APM∽△AON.
∴=.
∴AN==.
【解析】(1)把點(diǎn)C(6,)代入拋物線(xiàn)求出c的值,令y=0求出A點(diǎn)坐標(biāo),再用待定系數(shù)法求出直線(xiàn)AC的函數(shù)表達(dá)式.
(2)①在Rt△AOB中,tan∠OAB==. 在Rt△AOB中,tan∠OAD==.從而得出∠OAB=∠OAD;在Rt△POQ中,M為PQ中點(diǎn)得出OM=MP.∠APM=∠AON;從而證明△APM∽△AON.
②如上圖,過(guò)點(diǎn)M作ME⊥x軸于點(diǎn)E;由OM=MP.得出OE=EP;點(diǎn)M的橫坐標(biāo)為m;得出AE=m+4,AP=2m+4.
根據(jù)tan∠OAD=.求出cos∠EAM=cos∠OAD=;再根據(jù)△APM∽△AON;得出AN==.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解確定一次函數(shù)的表達(dá)式的相關(guān)知識(shí),掌握確定一個(gè)一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類(lèi)問(wèn)題的一般方法是待定系數(shù)法,以及對(duì)相似三角形的判定與性質(zhì)的理解,了解相似三角形的一切對(duì)應(yīng)線(xiàn)段(對(duì)應(yīng)高、對(duì)應(yīng)中線(xiàn)、對(duì)應(yīng)角平分線(xiàn)、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長(zhǎng)的比等于相似比;相似三角形面積的比等于相似比的平方.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知∠AOB=130°,∠COD=80°,OM,ON分別是∠AOB和∠COD的平分線(xiàn).
(1)如果OA,OC重合,且OD在∠AOB的內(nèi)部,如圖1,求∠MON的度數(shù);
(2)如果將圖1中的∠COD繞點(diǎn)O點(diǎn)順時(shí)針旋轉(zhuǎn)n°(0<n<155),如圖2,
①∠MON與旋轉(zhuǎn)度數(shù)n°有怎樣的數(shù)量關(guān)系?說(shuō)明理由;
②當(dāng)n為多少時(shí),∠MON為直角?
(3)如果∠AOB的位置和大小不變,∠COD的邊OD的位置不變,改變∠COD的大小;將圖1中的OC繞著O點(diǎn)順時(shí)針旋轉(zhuǎn)m°(0<m<100),如圖3,∠MON與旋轉(zhuǎn)度數(shù)m°有怎樣的數(shù)量關(guān)系?說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(閱讀)|4﹣1|表示4與1差的絕對(duì)值,也可以理解為4與1兩數(shù)在數(shù)軸上所對(duì)應(yīng)的兩點(diǎn)之間的距離;|4+1|可以看做|4﹣(﹣1)|,表示4與﹣1的差的絕對(duì)值,也可以理解為4與﹣1兩數(shù)在數(shù)軸上所對(duì)應(yīng)的兩點(diǎn)間的距離.
(1)|4﹣(﹣1)|=
(2)|5+2|=
(3)利用數(shù)軸找出所有符合條件的整數(shù)x,使得|x+3|=5,則x= .
(4)利用數(shù)軸找出所有符合條件的整數(shù)x,使得|x+3|+|x﹣2|=5,這樣的整數(shù)是: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在正方形ABCD中,點(diǎn)E,F(xiàn)分別是邊BC,AB上的點(diǎn),且CE=BF.連接DE,過(guò)點(diǎn)E作EG⊥DE,使EG=DE,連接FG,F(xiàn)C.
(1)請(qǐng)判斷:FG與CE的關(guān)系是___;
(2)如圖2,若點(diǎn)E,F(xiàn)分別是邊CB,BA延長(zhǎng)線(xiàn)上的點(diǎn),其它條件不變,(1)中結(jié)論是否仍然成立?請(qǐng)作出判斷并給予證明;
(3)如圖3,若點(diǎn)E,F(xiàn)分別是邊BC,AB延長(zhǎng)線(xiàn)上的點(diǎn),其它條件不變,(1)中結(jié)論是否仍然成立?請(qǐng)直接寫(xiě)出你的判斷.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的運(yùn)算程序中,若開(kāi)始輸入的x值為100,我們發(fā)現(xiàn)第1次輸出的結(jié)果為50,第2次輸出的結(jié)果為25,…,第2018次輸出的結(jié)果為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)在下列表格中填上相應(yīng)的值
x | … | -6 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 6 | … |
… | -1 | -2 | 3 | 1 | … |
(2)若將上表中的變量用y來(lái)代替(即有),請(qǐng)以表中的的值為點(diǎn)的坐標(biāo), 在下方的平面直角坐標(biāo)系描出相應(yīng)的點(diǎn),并用平滑曲線(xiàn)順次連接各點(diǎn)
(3)在(2)的條件下,可將y看作是x的函數(shù) ,請(qǐng)你結(jié)合你所畫(huà)的圖像,寫(xiě)出該函數(shù)圖像的兩個(gè)性質(zhì) :__________________________________________________.
(4)結(jié)合圖像,借助之前所學(xué)的函數(shù)知識(shí),直接寫(xiě)出不等式的解集: ____________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某景區(qū)一電瓶小客車(chē)接到任務(wù)從景區(qū)大門(mén)出發(fā),向東走2千米到達(dá)A景區(qū),繼續(xù)向東走2.5千米到達(dá)B景區(qū),然后又回頭向西走8.5千米到達(dá)C景區(qū),最后回到景區(qū)大門(mén).
(1)以景區(qū)大門(mén)為原點(diǎn),向東為正方向,以1個(gè)單位長(zhǎng)表示1千米,建立如圖所示的數(shù)軸,請(qǐng)?jiān)跀?shù)軸上表示出上述A、B、C三個(gè)景區(qū)的位置.
(2)A景區(qū)與C景區(qū)之間的距離是多少?
(3)若電瓶車(chē)充足一次電能行走15千米,則該電瓶車(chē)能否在一開(kāi)始充足電而途中不充電的情況下完成此次任務(wù)?請(qǐng)計(jì)算說(shuō)明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)y=ax2+ x+c(a≠0)與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,拋物線(xiàn)的對(duì)稱(chēng)軸交x軸于點(diǎn)D,已知點(diǎn)A的坐標(biāo)為(﹣1,0),點(diǎn)C的坐標(biāo)為(0,2).
(1)求拋物線(xiàn)的解析式;
(2)在拋物線(xiàn)的對(duì)稱(chēng)軸上是否存在點(diǎn)P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫(xiě)出P點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由;
(3)點(diǎn)E是線(xiàn)段BC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)E作x軸的垂線(xiàn)與拋物線(xiàn)相交于點(diǎn)F,當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時(shí)E點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,O為坐標(biāo)原點(diǎn),四邊形OABC為矩形,A(10,0),C(0,4),點(diǎn)D是OA的中點(diǎn),動(dòng)點(diǎn)P在線(xiàn)段BC上以每秒2個(gè)單位長(zhǎng)的速度由點(diǎn)C向B 運(yùn)動(dòng).設(shè) 動(dòng)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒
(1)當(dāng)t為何值時(shí),四邊形PODB是平行四邊形?
(2)在直線(xiàn)CB上是否存在一點(diǎn)Q,使得O、D、Q、P四點(diǎn)為頂點(diǎn)的四邊形是菱形?若存在,求t的值,并求出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。
(3) 在線(xiàn)段PB上有一點(diǎn)M,且PM=5,當(dāng)P運(yùn)動(dòng) 秒時(shí),四邊形OAMP的周長(zhǎng)最小, 并畫(huà)圖標(biāo)出點(diǎn)M的位置。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com