【題目】如圖,四邊形ABCD、CEFG都是正方形,ECD上且BE平分DBC,OBD中點(diǎn),直線BE、DG交于HBD,AH交于M,連接OH,下列四個(gè)結(jié)論:

BEGD;OHBG ③ ∠AHD45°;GDAM

其中正確的結(jié)論個(gè)數(shù)有

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

【答案】D

【解析】

①由已知條件可證得△BEC≌△DGC,∠EBC=CDG,因?yàn)椤?/span>BDC+DBH+EBC=90°,所以∠BDC+DBH+CDG=90°,即BEGD,故①正確;
②由①可以證明△BHD≌△BHG,就可以得到DH=GH,得出OH是△BGD的中位線,從而得出結(jié)論.
③若以BD為直徑作圓,那么此圓必經(jīng)過A、B、CH、D五點(diǎn),根據(jù)圓周角定理即可得到∠AHD=45°,所以②的結(jié)論也是正確的.
④此題要通過相似三角形來解;由②的五點(diǎn)共圓,可得∠BAH=BDH,而∠ABD=DBG=45°,由此可判定△ABM∽△DBG,根據(jù)相似三角形的比例線段即可得到AM、DG的比例關(guān)系;

解:①正確,證明如下:
BC=DC,CE=CG,∠BCE=DCG=90°
∴△BEC≌△DGC,
∴∠EBC=CDG,
∵∠BDC+DBH+EBC=90°,
∴∠BDC+DBH+CDG=90°,即BEGD,故①正確;
②∵BE平分∠DBC
∴∠DBH=GBH
BEGD,
∴∠BHD=BHG=90°
△BHD△BHG

,
∴△BHD≌△BHGASA),
DH=GH
OBD中點(diǎn),
DO=BO
OH△BDG的中位線,
OH=BG,故②正確;
③由于∠BAD、∠BCD、∠BHD都是直角,因此A、B、C、DH五點(diǎn)都在以BD為直徑的圓上;
由圓周角定理知:∠DHA=ABD=45°,故③正確;
④由②知:A、B、C、D、H五點(diǎn)共圓,則∠BAH=BDH;
又∵∠ABD=DBG=45°,
∴△ABM∽△DBG,得AMDG=ABBD=1,即DG=AM;
故④正確;
∴正確的個(gè)數(shù)有4個(gè).
故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在平行四邊形ABCD中,ABBC=32.

(1)根據(jù)條件畫圖:作∠BCD的平分線,交邊AB于點(diǎn)E,取線段BE的中點(diǎn)F,連接DFCE于點(diǎn)G.

(2)設(shè),那么向量=______.(用向量、表示),并在圖中畫出向量在向量方向上的分向量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程kx22k+1x+k10有兩個(gè)不相等的實(shí)數(shù)根x1,x2

1)求k的取值范圍;

2)是否存在實(shí)數(shù)k,使1成立?若存在,請(qǐng)求出k的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】工廠甲、乙兩個(gè)部門各有員工400人,為了解這兩個(gè)部門員工的生產(chǎn)技能情況,進(jìn)行了抽樣調(diào)查,請(qǐng)將下列過程補(bǔ)充完整:

收集數(shù)據(jù):

從甲、乙兩個(gè)部門各隨機(jī)抽取20名員工,進(jìn)行了生產(chǎn)技能測試,測試成績(百分制)如下:

整理、描述數(shù)據(jù):

按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):

成績

人數(shù)

部門

40≤x≤49

50≤x≤59

60≤x≤69

70≤x≤79

80≤x≤89

90≤x≤100

0

0

1

11

7

1

(說明:成績80分及以上為生產(chǎn)技能優(yōu)秀,70—79分為生產(chǎn)技能良好,60—69分為生產(chǎn)技能合格,60分以下為生產(chǎn)技能不合格)

分析數(shù)據(jù):

兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)如下表所示:

部門

平均數(shù)

中位數(shù)

眾數(shù)

783

775

78

81

得出結(jié)論:

.估計(jì)乙部門生產(chǎn)技能優(yōu)秀的員工人數(shù)約為

.可以推斷出 部門員工的生產(chǎn)技能水平高.理由為

(至少從兩個(gè)不同的角度說明推斷的合理性)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)不透明的布袋中僅有2個(gè)紅球、1個(gè)黑球,這些球除顏色外無其他差別.

1)甲同學(xué)先隨機(jī)摸出一個(gè)小球,記下顏色后放回?cái)噭,再隨機(jī)摸出一個(gè)小球,則兩次摸出的小球顏色不同的概率是多少?

2)乙同學(xué)從中一次摸出兩個(gè)球,則摸出的小球均為紅色的概率是___ _.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)課上,李老師準(zhǔn)備了四張背面都一樣的卡片A、B、C、D,每張卡片的正面標(biāo)有字母a、b、c表示三條線段(如下圖).把四張卡片背面朝上放在桌面上,李老師從這四張卡片中隨機(jī)抽取一張卡片后不放回,再隨機(jī)抽取一張.

李老師隨機(jī)抽取一張卡片,抽到卡片B的概率等于 ;

求李老師抽取的兩張卡片中每張卡片上的三條線段都能組成三角形的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某班學(xué)生每天使用零花錢的情況,小明隨機(jī)調(diào)查了15名同學(xué),結(jié)果如表:

每天使用零花錢(單位:元)

0

2

3

4

5

人數(shù)

1

4

5

3

2

關(guān)于這15名同學(xué)每天使用零花錢的情況,下列說法正確的是( 。

A.中位數(shù)是3B.眾數(shù)是5

C.平均數(shù)是2.5D.方差是4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,先有一張矩形紙片點(diǎn)分別在矩形的邊上,將矩形紙片沿直線MN折疊,使點(diǎn)落在矩形的邊上,記為點(diǎn),點(diǎn)落在處,連接,交于點(diǎn),連接.下列結(jié)論:

②四邊形是菱形;

重合時(shí),;

的面積的取值范圍是

其中正確的是_____(把正確結(jié)論的序號(hào)都填上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,半徑為⊙B經(jīng)過原點(diǎn)O,且與x,y軸分交于點(diǎn)A,C,點(diǎn)C的坐標(biāo)為(0,2),AC的延長線與⊙B的切線OD交于點(diǎn)D,則經(jīng)過D點(diǎn)的反比例函數(shù)的解析式為_______.

查看答案和解析>>

同步練習(xí)冊(cè)答案